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Abstract: Far from being devoid of life, Antarctic waters are home to Cryonotothenioidea, which
represent one of the fascinating cases of evolutionary adaptation to extreme environmental conditions
in vertebrates. Thanks to a series of unique morphological and physiological peculiarities, which
include the paradigmatic case of loss of hemoglobin in the family Channichthyidae, these fish survive
and thrive at sub-zero temperatures. While some of the distinctive features of such adaptations have
been known for decades, our knowledge of their genetic and molecular bases is still limited. We
generated a reference de novo assembly of the icefish Chionodraco hamatus transcriptome and used this
resource for a large-scale comparative analysis among five red-blooded Cryonotothenioidea, the sub-
Antarctic notothenioid Eleginops maclovinus and seven temperate teleost species. Our investigation
targeted the gills, a tissue of primary importance for gaseous exchange, osmoregulation, ammonia
excretion, and its role in fish immunity. One hundred and twenty genes were identified as significantly
up-regulated in Antarctic species and surprisingly shared by red- and white-blooded notothenioids,
unveiling several previously unreported molecular players that might have contributed to the
evolutionary success of Cryonotothenioidea in Antarctica. In particular, we detected cobalamin
deficiency signatures and discussed the possible biological implications of this condition concerning
hematological alterations and the heavy parasitic loads typically observed in all Cryonotothenioidea.

Keywords: Cryonotothenioidea; cold adaptation; transcobalamin; Antarctica; RNA-seq

1. Introduction

The Drake Passage opening and the Tasman Gateway (20–30 Mya) isolated the Antarc-
tic region from South America and Australia [1]. These changes were responsible for
developing the Antarctic Circumpolar Current (ACC), which created a barrier that isolated
the Southern Ocean, preventing the mixing of its waters with the Indian, Pacific, and
Atlantic Oceans and triggering the cooling of Antarctica [2–4]. Within this context, only
organisms possessing an appropriate physiological background could successfully adapt

Int. J. Mol. Sci. 2021, 22, 1812. https://doi.org/10.3390/ijms22041812 https://www.mdpi.com/journal/ijms

https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-6344-4931
https://orcid.org/0000-0001-6411-0813
https://orcid.org/0000-0003-3435-2656
https://orcid.org/0000-0001-5356-7754
https://orcid.org/0000-0002-4545-7229
https://orcid.org/0000-0001-8260-7006
https://orcid.org/0000-0001-8045-5651
https://orcid.org/0000-0001-9730-9394
https://doi.org/10.3390/ijms22041812
https://doi.org/10.3390/ijms22041812
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms22041812
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/1422-0067/22/4/1812?type=check_update&version=2


Int. J. Mol. Sci. 2021, 22, 1812 2 of 21

to freezing temperatures, while other species went extinct or migrated northwards to more
suitable environments. These events led to the genetic and morphological differentiation
between the Antarctic (i.e., Cryonotothenioidea) and non-Antarctic Notothenioidei within
the order Perciformes [5,6]. The successful colonization of the hostile yet extremely stable
Antarctic environment by fishes was made possible thanks to the development of several
characteristic physiological, morphological, and molecular adaptations. These peculiar
features include the production of anti-freeze glycoproteins (AFGPs), the loss of inducible
heat shock response (HSR), the optimization of metabolic processes at cold temperatures,
the lack of ossified bones, and the presence of high tissue lipid contents to compensate for
the loss of the swim bladder [7–9]. Most notably, the blood of Cryonotothenioidea shows
a reduced mean hemoglobin content, which culminates in the loss of this oxygen trans-
porter in some species, coupled with remarkable modifications of their cardio-circulatory
system [10].

In a standard marine environment, the absence of red blood cells and hemoglobin
would not be compatible with life. However, icefishes are a remarkable evolutionary
example of the interaction between environment, genetics, and selective pressure. The
survival of these organisms in the Antarctic region is possible thanks to the low average
temperature of seawater (−2 ◦C), which contributes to increased solubility of gases in
fluids, potentially allowing their direct transport by plasma without the intervention of
carrier molecules [11,12]. Moreover, icefish have evolved an implemented cardiovascular
system that optimizes the transport of gases, including increased blood volume (2–5 times
higher than red-blooded teleosts), a larger heart, and blood vessels with a larger diameter
compared to their temperate relatives [13–15].

From an evolutionary and taxonomical perspective, Cryonotothenioidea include five
out of the eight families recognized within Notothenioidea according to the World Register
of Marine Species, i.e., Harpagiferidae, Artedidraconidae, Bathydraconidae, Channichthyi-
dae, and Nototheniidae [6], whereas non-Antarctic notothenioids include Bovichtidae,
Eleginopsidae, and Pseudaphritidae. However, it is worth noting that recent molecu-
lar investigations have challenged the monophyly of some of these clades [16]. Among
these, Channichthyidae, nicknamed “icefish” or “white-blooded” fish, display the most
distinctive morphological and physiological features, being the only vertebrates to lack
hemoglobin and functional erythrocytes in adult life stages. While it is currently a matter
of debate whether hemoglobin loss is an adaptive trait, or rather the product of genetic
drift [10], the underlying cause was confirmed to reside in a gene loss event [12,17]. Despite
the presence of red blood and normal hematocrit levels, the four other Cryonotothenioidea
families show lower mean cellular hemoglobin concentrations than their non-Antarctic
relatives and can survive carbon monoxide poisoning. This condition would be otherwise
lethal in any other fish species [18].

Our understanding of these fascinating adaptation mechanisms is still incomplete, and
the molecular machinery underpinning these unique developmental programs is mostly
unknown. However, genetic and molecular information for Channichthyidae and red-
blooded Cryonotothenioidei is becoming increasingly accessible. Following the release of
the first fully-sequenced genome of a red-blooded species [19], other studies have targeted
the blackfin icefish Chaenocephalus aceratus [17], the dragonfish Parachaenichthys charcoti [20],
and the icefish Chionodraco myersi [21], revealing the presence of lineage-specific gene
family expansions and the critical importance of mitochondrial function in cold adaptation.
Most recently, large-scale genome sequencing approaches, carried out under the Vertebrate
Genome Project (VGP) umbrella, led to the release of eleven draft genome assemblies for
Notothenioidei (as of 20 January 2021).

Transcriptome studies can provide important complementary information to genome
sequencing approaches, enabling to extend the range of functional investigations to the
layer of gene expression [21]. Several RNA-sequencing studies have been carried out over
the past few years in red- [22,23] and white-blooded Cryonotothenioidea [24–26]. However,
just a handful experiments have targeted the gills, a highly vascularized tissue of fundamen-
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tal importance for gaseous exchange [27,28], ammonia excretion [29], osmoregulation [30],
and immunity [31], and none has ever targeted the gills of a hemoglobin-less species.

In the present work, we undertook a large-scale comparative study between the gill
transcriptome of Antarctic and non-Antarctic Eupercaria, with a particular emphasis on
Cryonotothenioidea, using the benthic icefish Chionodraco hamatus (Lönnberg, 1905) as
a model species (Figure 1). These analyses were carried out to detect novel molecular
adaptations to cold and to provide complementary functional information to those recently
revealed by whole-genome sequencing studies [17,19,21]. Besides several previously
described adaptations, we unexpectedly detected signatures of cobalamin deficiency, and
we discuss their possible intimate link of our findings with the high level of parasitism and
the hematological alterations found in all Cryonotothenioidea.
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Figure 1. External morphology of an adult Chionodraco hamatus specimen, with the assembly and
annotation statistics obtained for gill transcriptome.

2. Results and Discussion
2.1. De Novo Assembly of the C. hamatus Gills Transcriptome

The reference transcriptome obtained from the gills of C. hamatus comprised 28,644
contigs with an average length of 1705 nucleotides and a N50 value of 2724 (Figure 1).
The number of protein-coding genes annotated in the fully sequenced genomes of other
Antarctic notothenioids is similar to that of other teleosts, i.e., 38,127 in C. myersi [21], 32,112
in Trematomus bernacchii (unpublished), 30,850 in Gymnodraco acuticeps (unpublished), 30,773
in C. aceratus [17], 30,381 in P. charcoti [20], and 26,850 in N. coriiceps [19]. As expected from
the single-tissue origin of RNA-seq data, the C. hamatus transcriptome was slightly less
complete than these genomic resources, with 66% present actinopterygian Benchmarking
Universal Single-Copy Orthologs (BUSCOs) and just 11% and 23% fragmented and missing
orthologs, respectively. These metrics were in line with other nototheniod transcriptomes



Int. J. Mol. Sci. 2021, 22, 1812 4 of 21

obtained from single tissues [23], but lower than those obtained from most published
notothenioid genomes, likely due to the lack of expression of several tissue-specific or
developmentally regulated genes in the gills.

In further support to the quality of the reference gills transcriptome, 88.59% of the
total reads could be mapped in pairs to assembled contigs and 13.65% as broken pairs,
possibly due to transcript fragmentation. The low ambiguous mapping rate (0.04%) was
in line with the near-complete lack of duplicated BUSCOs, highlighting that the reference
transcriptome included non-redundant sequences. Annotation rates were also satisfying,
considering the presence of non-coding transcripts and lineage-specific protein-coding
genes with no similarity to proteins deposited in public databases. Overall, 15,362 contigs
(53.63% of the total) could be annotated either with GO terms or conserved protein domain
annotations (Figure 1).

Although C. hamatus was previously targeted by RNA-sequencing approaches to
elucidate alterations of the hematopoietic pathways and modifications of mitochondrial
function [24–26], to the best of our knowledge, this is the first study to investigate the
transcriptional landscape of the gills in this species.

2.2. An Insight into the Highly Specialized Transcriptional Profile of the Gills

Due to their crucial role in gas exchange, homeostasis, osmoregulation, and ammonia
excretion, the gills represent a tissue of the utmost importance in teleosts and one of the
largest in terms of surface exposed to the external environment [32]. Gills are deeply
vascularized with blood vessels, which redistribute oxygen and nutrients to the other
body districts. Moreover, gills play a crucial function in the fish immune system, as they
are in direct contact with the water column and, therefore, with potentially pathogenic
microbes present in the marine environment. The immune function of gills is mainly
performed by the associated lymphoid tissue (GIALT), which is rich in B cells, T cells, and
macrophages/granulocytes; these components provide a significant contribution in terms
of genes involved in innate and adaptive immunity in the gills transcriptome [33].

Consistently with these expectations, C. hamatus gills displayed a highly distinctive
gene expression profile compared with the other four tissues previously analyzed by
Song and colleagues (i.e., hearth, skeletal muscle, liver, and head kidney) [26]. A total
of 695 transcripts displayed a marked tissue-specificity (Figure 2) and were enriched in
functional annotations in line with previously reported physiological functions and mor-
phological features of teleost gills. These included, among others, structural components
of gills fibrils (e.g., cytoskeletal keratins and intermediate filaments), components of the
gill epithelial barrier (e.g., tight junctions, desmosomes, claudins), and several transcripts
involved in mucosal immunity, as reported and discussed in detail in Supplementary Data
Note 1.

The results obtained were validated on a larger set of biological samples (i.e., four
additional adult individuals) by quantitative real-time PCR (qRT-PCR). Although the
results of this analysis need to be considered with caution due to the different year of
sampling compared with the individual subjected for RNA-sequencing, they confirmed
the strong tissue-specificity of six selected target genes, which displayed high expression
values in all biological replicates, and revealed a limited transcription in the other tissues
(Supplementary Data Note 2). By exploiting the availability of RNA-seq data from 19
different adult tissues of the red-blooded species Trematomus bernacchii, we also verified
that the gill-specific genes retained the same pattern of expression in this other notothenioid
species (Supplementary Data Note 3).
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Figure 2. Hierarchical clustering of a set of representative genes (achieving a TPM value > 1000 in at least one tissue), based
on the gene expression levels, i.e., Log10(TPM+1), of skeletal muscle (M), hearth (H), head kidney (HK), liver (L), and gills
(G). Genes were clustered with an average linkage method, based on Pearson distances. Colors represent the Z-scores,
calculated for each row based on the maximum and minimum gene expression level observed. Gills-specific genes are
boxed, and the top 20 most highly expressed gill-specific protein-coding transcripts, defined by a fold change value > 10 in
all the pairwise comparisons with the other available tissues, are shown in a table. TPM = Transcripts Per Million. * target
genes for validation by qRT-PCR, see Supplementary Data Note 2.

2.3. Evidence of Cold Adaptation in the Transcriptomes of Cryonotothenioidea Gills

Overall, the comparison between the gills gene expression profiles of the six Cryono-
tothenioidea and the other eight Eupercaria species selected in this study (Table S3) resulted
in a clear-cut separation between these two fish groups (Supplementary Data Note 4).

We applied stringent significance thresholds in the statistical analyses, both in terms of
FDR-corrected p-value (i.e., <0.05) and in terms of consistency across species (i.e., CS ≥ 36,
see Section 3.3), to pinpoint 120 orthologous genes displaying a consistent trend of up-
regulation in species adapted to life at sub-zero temperatures. Such differentially expressed
genes (DEGs) displayed similar expression profiles in all red-blooded Cryonotothenioidea
(P. borchgrevinki, D. mawsoni, P. charcoti, and Trematomus spp.). Quite surprisingly, this
gene expression signature was also shared by the white-blooded icefish C. hamatus, de-
spite the peculiar morpho-physiological features of this species (Figure 3). On the other
hand, the gene expression profiles of the 120 candidate orthologs in the sub-Antarctic
notothenioid species Eleginops maclovinus closely matched those of non-Antarctic species,
further reinforcing the likely relatedness of this molecular signature with cold adaptation
in Cryonotothenioidea and ruling out the presence of a phylogenetic signature.
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Figure 3. Hierarchical clustering of the six Cryonotothotenioidea and eight additional Eupercaria species considered in
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differential expression between the two groups (≥42). For graphical representation, each gene’s square root-transformed
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the median standardized square root-transformed TPM value of all species. Ch: Chionodraco hamatus; Dl: Dicentrarchus
labrax; Dm: Dissostichus mawsoni; Em: Eleginops maclovinus; Ga: Gasterosteus aculeatus; Lg, Ljutanus guttatus; Lm: Lateolabrax
maculatus; Lp: Larimichthys polyactis; Pb: Pagothenia borchgrevinki; Pc: Parachaenichthys charcoti; Pf: Perca fluviatilis; Tb:
Trematomus bernacchii; Tn: Trematomus newnesi; Tr: Takifugu rubripes.

In detail, 9 DEGs displayed the maximal CS (i.e., 48) and 43 DEGs have a CS > 40.
In some cases, the putative cold adaptation-related transcripts were characterized by
extremely significant fold change values, being expressed at several dozen times higher
levels in Antarctic species, thereby emerging as the most interesting candidates for in-depth
studies. The complete list of DEGs is reported in Table S4, and the top 20 most significant
cold adaptation-related candidate genes in Cryonotothenioidea are reported in Table 1.

2.4. Comparative Transcriptome Analysis Reveals Signatures of Cobalamin Deficiency
in Cryonotothenioidea

Unexpectedly, the most highly expressed gene in C. hamatus gills (nearly 12,000 TPM)
encoded a transcobalamin-like protein (TCNL) (Figure 2), implying that more than 1% of
the total transcriptional effort of this tissue is employed into the synthesis of an mRNA
encoding a protein putatively involved in cobalamin (vitamin B12) binding. The high
expression of TCNL was shared with other cryonotothenioid species, as this ortholog was
the one achieving both the highest CS (48) and the most significant q-value (1.81 × 10−21)
in the comparison of expression profiles with fish species living in temperate environments
(Table 1, Figure 4B).
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Table 1. Top 20 most significantly up-regulated orthologous genes in Cryonototheniodea, compared with non-Antarctic
Eupercaria. CS: consistency score; qval: FDR-corrected p-value; FC: fold change.

Gene Description CS Qval FC Putative Function

TCNL transcobalamin-like protein 48 1.81 × 10−21 31.20 cobalamin carrier protein
dkeyp-77h1.4 si:dkeyp-77h1.4 48 1.02 × 10−20 494.00 unknown

GMPR guanosine
monophosphate reductase 48 5.76 × 10−19 9.96 purine biosynthesis

MTHFSD methenyltetrahydrofolate
synthetase domain containing 48 1.07 × 10−15 11.34 tetrahydrofolate

metabolism regulator
CHIT1 chitotriosidase-I 48 3.45 × 10−14 107.97 defense against nematodes

FGF18A fibroblast growth factor 18a 48 1.85 × 10−10 46.61 cell proliferation regulator

OSTC oligosaccharyltransferase
complex subunit 48 1.36 × 10−8 5.38 N-glycosylation of

nascent polypeptides

BLMH bleomycin hydrolase 48 2.18 × 10−7 4.52 homocysteine thiolactone
detoxyfication

TMEM41B transmembrane protein 41B 48 1.46 × 10−5 6.03 autophagosome formation
RHOV ras homolog family member V 47 1.43 × 10−13 7.20 actin cytoskeleton control

PIGB phosphatidylinositol glycan
anchor biosynthesis, class B 46 3.95 × 10−43 30.20 GPI-anchor biosynthesis.

CA1A carbonic anhydrase 1a 46 2.45 × 10−5 8.71 CO2 excretion, cellular pH regulation

WAP65
Warm-temperature
acclimation related

65 kDa protein
46 2.75 × 10−5 22.85 stress response gene

ARHGAP1 Rho GTPase activating
protein 1 45 2.49 × 10−10 7.37 GTPase activator

LDB3 LIM domain binding 3 44 9.36 × 10−15 8.38 scaffolding protein
SFRP1 frizzled-related protein 44 1.47 × 10−8 9.20 Wnt signaling modulator

MMP19 matrix metallopeptidase 19 44 8.42 × 10−8 6.05 extracellular matrix remodeling
NHLRC3 NHL repeat containing 3 44 5.65 × 10−7 3.83 unknown

GALT galactose-1-phosphate
uridylyltransferase 44 2.81 × 10−3 4.44 galactose catabolism

PARP16 poly (ADP-ribose) polymerase
family, member 16 44 2.83 × 10−2 3.56 unfolded protein response

While three different types of cobalamin-binding proteins are present in mammals,
i.e., transcobalamin-1 (TCN1), transcobalamin-2 (TCN2), and the gastric intrinsic factor
(GIF), previous phylogenetic studies have shown that a single bona fide transcobalamin gene
is present in teleosts [34,35]. The C. hamatus TCNL protein dramatically differs from the
canonical teleost transcobalamins, as it lacks the N-terminal α(6)-α(6) barrel domain [36]
and only retains the C-terminal α domain, crucial for cobalamin binding-specificity [37].
Considering that TCNL orthologs are present in all Eupercaria, we argue these peculiar
sequences might have escaped previous investigations as genuine transcobalamins [34,35].
Details about gene/protein architecture and phylogenetic relationship between TCNL and
canonical TCNs are provided in Supplementary Data Note 5. The preservation of several
conserved residues involved in cobalamin binding in the α domain (Figure 4A) and the
presence of a signal peptide suggest that TCNL is released in the bloodstream by endothelial
cells present in the gill tissue, possibly functioning as a cobalamin-binding protein.

In mammals, TCN1, GIF, and TCN2 are specifically produced by the salivary glands
(TCN1), the parietal cells of the stomach (GIF), and the terminal ileum enterocytes (TCN2),
respectively [38]. TCN1 strongly binds ingested B12 vitamin in the oral cavity, protecting
this essential vitamin from degradation in the acidic stomach environment and allowing its
release in the duodenum. Here, free vitamin B12 is complexed with TCN2, which enables its
absorption in the ileum [39]. This complex is quickly degraded upon absorption, allowing
the binding between cobalamin and TCN2 for transportation in the portal circulation
to the liver. While no expression data are presently available for the icefish digestive
tract, we can confirm that the TCNL gene lacks significant expression in tissues other
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than gills in T. bernacchii (Figure S2, panel C). To the best of our knowledge, TCNs have
never been considered as relevant genes in the context of cold adaptation and the gill-
specificity of TCNL is somewhat puzzling, considering that TCNs usually cover their
primary physiological function in the digestive tract.
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A fascinating hypothesis, which might explain the requirement for an increased
cobalamin uptake by an unconventional tissue, is connected with the widespread cestode
infections suffered by different Cryonotothenioidea species [40–43]. Previous histopatho-
logical analyses have indeed revealed a remarkably high load of nematode and cestode
parasites in C. hamatus, up to a few thousand helminths per specimen [44,45]. In detail, it
has been demonstrated that this species is the definitive host for 10 different helminth taxa,
as well as the intermediate host for another six, with the most severe infections associated
with the nematode Contracaecum osculatum and, in particular, with tetraphyllidean and
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diphyllobothridean cestodes [46]. Diphyllobothridean parasites and other tapeworms are
not able to synthesize cobalamin de novo [47] and entirely rely on the uptake of dietary
cobalamin from their host [48], to the point that their infections in human are typically
associated with vitamin B12 deficiency-related pathologies, including megaloblastic ane-
mia [49–51]. It is also noteworthy that diphyllobothriasis has profound and deleterious
hematological effects in red-blooded fishes, including a decrease in erythrocyte count,
due to the fundamental role of folate and vitamin B12 as erythropoiesis cofactors, and a
diminished hemoglobin content [52]. However, pathological effects are less harmful in
Cryonotothenioidea, due to the increased solubility of gases in fluids and the improved
function of their cardio-circulatory system.

Cobalamin is a crucial factor for erythropoiesis and several other key cellular processes,
most notably purine and amino acid biosynthesis. Therefore, although Antarctic fish might
tolerate hematological alterations, the adoption of appropriate countermeasures would
be necessary to maintain the functionality of these housekeeping processes. The hyper-
production of TCNL might be part of this molecular rescue system, although the biological
significance of this protein in the gills is presently unknown.

Additional transcriptomic evidence supports a condition of cobalamin deficiency
in Antarctic fishes, pointing in particular to the presence of hyperhomocysteinemia, a
pathological condition usually caused by cobalamin and folate deficiency [53]. In human,
this is considered a serious risk factor for the development of cardiovascular diseases
due to the blood accumulation of Hcy-thiolactone, a homocysteine metabolite able to
impair protein functionality by creating isopeptidic bonds with Lys residues [54]. This
dangerous compound is detoxified by the bleomycin hydrolase enzyme (BLMH) [55],
whose expression was markedly up-regulated in Antarctic species (q-value = 2.18 × 10−7,
CS = 48; Table 1, Figure 4C).

Another line of evidence pointing in this direction derived from the high expression
of methenyltetrahydrofolate synthetase (MTHFSD), exceeding by a dozen times the ex-
pression of other Eupercarian species (q-value = 1.07 × 10−15, CS = 48; Table 1, Figure 4D).
MTHFSD plays an essential role in the folate catabolism, by remobilizing 5-formylTHF,
the only stable form of THF used for storage, into the active folate pool [56]. The con-
stitutive activation of this enzyme might be explained by the continuous demand for
active folate to support basic folate-dependent biosynthetic processes. On the other hand,
methenyltetrahydrofolate reductase (MTHFR) and cystathionine β-synthase (CBS), two
key enzymes in Hcy detoxification [54], did not show significant trends of up-regulation in
Antarctic species.

As a signature of purine biosynthesis impairment, also consistent with cobalamin
deficiency, guanosine monophosphate reductase (GMPR) was significantly over-expressed
in all Cryonotothenioidea (q-value = 5.76× 10−19, CS = 48; Table 1, Figure 4E). This enzyme,
by converting guanosine monophosphate (GMP) to inosine monophosphate (IMP), has a
rescue function, as it allows the re-utilization of free intracellular purine nucleosides.

Overall, the increased expression levels of TCNL, MTHFSD, BLMH, and GMPR in
the gills of Cryonotothenioidea might represent compensatory mechanisms to counter-
balance the heavy loads of helminthic parasites found in the gastrointestinal tract, which
on the other hand, might have provided a selective advantage in cold adaptation due to
the hematological alterations mentioned above. Under this assumption, the absorption
of cobalamin in the gills, or in other tissues, through the interaction between the TCNL-
cobalamin complex and a receptor yet to be determined, might mitigate the mitigation of
cobalamin deficiency caused by a heavily impaired uptake in other body districts due to
widespread dhiplyllobrotriosis. It remains to be investigated whether cobalamin uptake
occurs directly from seawater, where this water-soluble molecule is dissolved, or it involves
uncharacterized gill-associated cobalamin-producing bacterial symbionts [57].



Int. J. Mol. Sci. 2021, 22, 1812 10 of 21

2.5. The High Expression of the Carbonic Anhydrase Genes CA1A and CA4A Explains the High
Enzymatic Activity Observed in Antarctic Fish Gills

Carbonic anhydrases (CAs) are part of a gene family comprising several members,
with specialized functions and diverse tissue localization, and just a few of these enzymes
are expressed at biologically relevant levels in the gills of Cryonotothenioidea. Bayesian
phylogeny (Figure 5A), which updates previous investigations conducted using a limited
number of sequences [58], highlighted the conservation of two paralogous gene copies
(named CA1A and CA1B) in all Eupercaria. These belong to a group homologous to
human CA1/2/3, cytosolic enzymes mainly expressed in erythrocytes (CA1 and CA2)
and skeletal muscle (CA3). Unlike mammals, Eupercaria possess multiple CA4-like genes.
Interestingly, two out of the three fish CA4 isoforms (CA4A and CA4B) display a domain
architecture identical to human CA4, whereas the third one contains two consecutive
CA domains, in a rearrangement unique to Eupercaria. Phylogenetic inference clearly
pointed out that these twin domains are the result of a recent duplication event (Figure 5A).
Eupercaria also possess a single CA5 gene, encoding a mitochondrial CA with essential
roles in gluconeogenesis and ureagenesis, as well as a single CA6-like gene, which in human
is expressed in the salivary gland. The latter encodes a protein containing a C-terminal
pentraxin domain (Figure 5A), which appears to be a lineage-specific acquisition. Although
transcripts homologous to the other human CA isoforms not mentioned above were seldom
detected in the assembled transcriptomes of some species taken into account, they did not
reach biologically significant expression levels (TPM < 1) in the gills and were therefore
excluded from an in-depth analysis.

Overall, two of the aforementioned CA genes (i.e., CA1A and CA4A) displayed marked
gill-specific expression in C. hamatus, reaching extremely high expression levels (~4000 and
~9000 TPM, respectively, see Figure 2). This observation was confirmed by qRT-PCR and in
silico analyses in C. hamatus (Supplementary Data Note 2) and T. bernacchii (Supplementary
Data Note 3), respectively. Although CA4C also displayed gill-specificity, it was expressed
at values lower than 5% compared to the other two isoforms. CA4B and the mitochondrial
isoform CA5 were expressed at moderate levels in all tissues (Figure 5B). CA1B, expressed
at moderate levels in gills, was also found in head kidney, and CA6 was found in heath
and skeletal muscle.

CA1A (CS = 46, q-value = 2.45 × 10−5) was included among the most significant
orthologs involved in cold-adaptation, due to its high expression in Cryonotothenioidea
compared with other Eupercaria (Table 1). Although CA4A and CA4B were not included
in the DEG shortlist due to their relatively low CS (33 and 32, respectively), they also
displayed a general tendency of higher expression in the gills of Antarctic species, as
evidenced by the visual representation of the cumulative expression of all CA variants
(Figure 5C). Overall, CAs contributed to 4.68 ± 2.01% of the global gill transcriptional
effort in Cryonototheniodea, compared to 1.25 ± 0.87% in other Eupercaria. This is in
line with the previously reported higher CA enzymatic activity in the gills of C. hama-
tus and T. bernacchii compared with non-Antarctic species [59,60]. Altogether, these data
point out that the high CA enzymatic activity associated with the gills of Antarctic fish
is likely linked with the increased expression level of three CA genes shared by all Eu-
percaria (i.e., the membrane-bound isoforms CA4A and CA4C, and the cytosolic isoform
CA1A), and not merely ascribable to an improved catalytic activity of these enzymes at low
temperatures [59,60].

The reasons underpinning the intense production of CA in this tissue in the polar en-
vironment may be intertwined with the alterations of the gas transport system documented
in Cryonotothenioidea, and in icefishes in particular. It is now well-recognized that CAs
play a crucial role in fish gills, where they catalyze the hydration of CO2 to HCO3− and
H+, affecting the concentration gradient for gas exchange. Moreover, this reaction is at
the basis of blood acid-base regulation [61] and therefore, in species with a reduced blood
oxygen-carrying capacity, CAs are likely to cover an essential function in the restoration
of the blood acid/base homeostasis following swimming exercise [10]. The relevant gill
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activity of CAs in Antarctic notothenioids might explain the observation that they show
a remarkable respiratory increase instead of the expected metabolic acidosis following
strenuous activity [62].Int. J. Mol. Sci. 2021, 22, x  11 of 23 
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In light of these observations, the type and subcellular localization of CA involved in
efficient CO2 conversion in the gills is of particular interest. CA4 isotypes are particularly
relevant in the context of the gill tissue, since mammalian CA4 is typically expressed at
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high levels in lung epithelium, where its protein product is anchored to the luminal side
of the pulmonary membrane. Other authors have previously described the expression of
a membrane-bound CA isoform, accessible to the blood plasma, in the gills of the icefish
Champsocephalus gunnari, hypothesizing its participation in CO2 excretion [63]. However,
the partial sequence reported by Harter and colleagues belongs to the CA4B group, most
likely covering just a minor role in the global CA activity in the gills of Cryonotothenioidea
(Figure 4C). Moreover, a previous study has demonstrated that, in the white-blooded
notothenioid Chaenocephalus aceratus, a membrane-bound CA4-like protein only accounted
for less than 3% of the total CA activity observed in the gills, whereas the remaining 97%
was ascribable to a cytosolic isoform [64]. In light of this information, the most likely
candidate isoform for the extraordinary CA enzymatic activity in the gills of Antarctic
fishes would be CA1A.

It is also worth mentioning that, despite the high levels of expression of CAs in the
gills of both white- and red-blooded Cryonotothenioidea, no CA activity is detectable in
C. hamatus blood [59]. This finds an explanation in the lack of functional red blood cells,
which in vertebrate contain an appropriate amount of CA1, as well as in the presence of an
endogenous plasma CA inhibitor in the blood of Channichthyidae [59]. We hypothesize
that CA1B, only expressed at low levels in C. hamatus gills and head kidney (Figure 5B),
could represent the cytosolic CA isoform responsible of the CA activity of teleost red blood
cells. Altogether, these observations support the development of experiments dedicated at
an improved study of CA function in Antarctic fish, as these enzymes emerge as primary
players in the physiological adaptations to cold.

2.6. Constitutive Expression of Chaperones, Co-Chaperones, and the Proteasome Machinery

Freezing temperatures do not just present a significant challenge for metabolic adapta-
tions, but also for fundamental cellular processes such as protein synthesis and folding.
Previous studies have evidenced that Antarctic fish species have developed specific strate-
gies to assist protein folding at low temperatures, such as an increased affinity of the
cytosolic chaperone CCP to its client proteins [65] and the shift from inducible to constitu-
tive expression of HSPs [27,66,67]. While the high expression of molecular chaperones has
been previously evidenced in Dissostichus mawsoni [68], here we provide additional insights
concerning the enhanced expression of several different molecular chaperones, as well as
of components of the proteasome machinery for the degradation of unfolded proteins.

Namely, FKBP3, a peptidyl-prolyl cis-trans isomerase which catalyzes the formation of
disulfide bonds during oxidative folding [69], was up-regulated in all Cryonotothenioidea
compared to non-Antarctic fishes (q-value = 3.5 × 10−4, CS = 41 Figure 6B). Similarly,
the peptidylprolyl isomerase D (PPID), an HSP90 co-chaperone which accelerates protein
folding, and PARP16, a key regulator of unfolded protein response in the endoplasmic retic-
ulum, were both upregulated (q-value = 1.08 × 10−7/CS = 42 and q-value = 0.028/CS = 44,
respectively; Figure 6B). Although with relevant fluctuations across species, also the warm
inducible protein 65 (WAP65) was significantly overexpressed in Cryonotothenioidea
(q-value = 2.75 × 10−5, CS = 46) [70,71].

In agreement with the role of proline as a chemical thermoprotectant [72], two enzymes
involved in the biosynthesis of this amino acid were significantly up-regulated, namely
the pyrroline-5-carboxylate reductase PYCR3 (q-value = 1.23 × 10−10, CS = 40) and the
ornithine aminotransferase OAT (q-value = 6.09 × 10−6, CS = 40) (Figure 6B).

Protein glycosylation is another molecular mechanism used to assist protein folding
and improving their stability, by altering folding kinetics [73,74]. Interestingly, we can
report that some enzymes involved in this process were up-regulated in Antarctic notothe-
nioids, such as OSTC, a subunit of the oligosaccharyltransferase complex involved in the
N-glycosylation of nascent polypeptidic chains (q-value = 1.36 × 10−8, CS = 48, Figure 6B).
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While the high constitutive expression of chaperones had already been reported in
Antarctic fish [27], we can report here for the first time that a number of genes encoding
structural components of the proteasome follow a similar trend of expression, possibly as a
result of the low rate of successfully folded newly synthesized proteins. Indeed, previous
reports showed that the rate of functional newly synthesized proteins is only in the range
of 15–20% in polar marine ectotherms. In contrast, both the levels of protein ubiquitination
and RNA to protein ratios are much higher than those observed in species living in
temperate environments [75]. In detail, our data reveal a significant over-expression of
several proteasome subunits, in particular those pertaining to the regulatory particle 19S
(Figure 6A).

Altogether, this suggests that, in spite of the significant enhancement of unfolded
protein response in the ER, a significant fraction of the newly synthesized proteins fail
to fold properly, being therefore directed to proteasomal degradation. This conclusion is
supported by the recent report of strong proteasome activity in T. bernacchii, which has
been correlated with a high rate of protein degradation [76].

The numerous signatures of alteration of nascent polypeptide glycosylation, unfolded
protein response, and proteasomal activity shared by the four Antarctic species point
out that these biological pathways are commonly affected in all Cryonotothenioidea,
irrespective of species-specific morpho-physiological adaptations, confirming the similar
energetic cost of protein synthesis reported for red- and white-blooded nototheniods [77].

2.7. Other Remarks and Conclusions

The genes described in detail in the previous sections only represent a fraction of
those that met the criteria we arbitrarily set (Table S4), while many others either have an
unknown function or show no apparent connection to cold adaptation. We also need to
stress out that many genes showing significant q-values, but moderate consistency score
may be involved into cold tolerance as well, although not specifically in the gill tissue, or
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may be otherwise subject to highly significant inter-specific variations of expression levels.
Undoubtedly, several such cases might require additional targeted investigations in the
future. One of the most evident, but still unexplained, biological processes whose upregu-
lation in Cryonotothenioidea gills is supported by the identification of multiple genes is
the regulation of vesicular trafficking, clathrin-mediated endocytosis in particular. In these
respects, TWF1 (q-value = 2.01 × 10−9, CS = 38), TMED10 (q-value = 1.73 × 10−5, CS = 43),
VPS53 (q-value = 1.54 × 10−8, CS = 37), EHD3 (q-value = 1.38 × 10−18, CS = 43), FCHO2
(q-value = 7.05 × 10−13, CS = 41), and RHOV (q-value = 1.43 × 10−13, CS = 47) are all
relevant examples. Moreover, several features unique to C. hamatus (and, possibily, to other
icefishes), but not shared with red-blooded notothenioids may have been missed by our
comparative approach. Among these, an observation of high interest from an immunologi-
cal point of view is represented by the complete lack of expression of the immunoglobulin
Tau heavy chain gene, which has a role of primary importance in fish mucosal immunity
and is generally highly expressed in this tissue [78]. This would reinforce preliminary
observations that point towards a possible gene loss event in Channichthyidae, that would
represent just one of the several peculiar features in the evolution of the immunoglobulin
heavy chain genes of Antarctic fishes [79].

This work provides the first large scale comparative transcriptomics analysis car-
ried out in the gills of Cryonototheniodea, with the aim to identify genes significantly
up-regulated in Antarctic fish species compared to temperate Eupercaria. Among the
120 selected orthologous genes, we can report several previously unreported molecular
players, which might play an essential role in the adaptation to the freezing Antarctica
environment. Surprisingly, such alterations were not limited to Channichthyidae, but they
were shared by all the analyzed cryonotothenoids, regardless of the presence or absence of
functional erythrocytes.

These data revealed an unexpected alteration of biological processes linked to cobal-
amin metabolism, evidencing molecular signatures of hyperhomocysteinemia. These ob-
servations open several interesting questions concerning the possible connection between
this pathological condition and the heavy loads of parasites observed in cryonotothenioids,
within the evolutionary frame that led to the development of a peculiar cardio-circulatory
system in Antarctic teleosts, characterized by the lack of hemoglobin in Channichthyidae.

3. Materials and Methods
3.1. Chionodraco Hamatus Transcriptome de Novo Assembly and Annotation

An adult C. hamatus specimen of unspecified sex, weighting about 150 g, was collected
with the aid of a small demersal gillnet, as established by the Commission for the Conserva-
tion of Antarctic Marine Living Resources (CCAMLR), which was left in the water for four
hours, i.e., a timing which was selected to maximize the chances of catching live specimens,
minimizing the impact of sampling on non-target marine fauna. The catch was made
close to the Mario Zucchelli base (Ross Sea 74◦41′42′ ′ S, 164◦07′23′ ′ E) during the Antarctic
summer (January–February) of 2009, within the frame of the Italian National Program of
Research in Antarctica (PNRA). Upon collection, the fish was immediately transported
to the base in an aerated bin and placed in a tank with running natural seawater, kept at
the same temperature recorded in natural environment (i.e., −2 ◦C). After one week of ac-
climatization, which allowed the fish to recover from the stress linked with the capture, the
specimen was lethally anesthetized with 1 mg ×mL−1 tricaine methanesulfonate (Sigma,
Saint Louis, MO, USA) and the gills were immediately dissected and placed in RNAlater
solution (Thermo Fisher Scientific, Waltham, MA, USA). RNA extraction was performed
with TriPure (Roche, Basel, Switzerland) following the manufacturer’s instructions. The
quality of the extracted RNA was evaluated with a Bioanalyzer 2100 instrument (Agilent
Technologies, Santa Clara, CA, USA) to ensure that the RNA integrity number was higher
than 9 and that no DNA, protein, and phenol contamination was present, as assessed by
260:230 and 260:280 absorbance rates by spectrophotometric analysis. The extracted RNA
was shipped to the Institute of Applied Genomics (Udine, Italy) for the preparation of an
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Illumina TruSeq library (Illumina, San Diego, CA, USA) for paired-end sequencing on a
single lane of an Illumina HiSeq2000 platform, with a 2 × 100 paired-end strategy. The raw
reads, deposited at the NCBI SRA database under the accession ID SRX2181658 (Bioproject:
PRJNA343733), were imported in the CLC Genomics Benchwork v.20 (Qiagen, Hilden,
Germany) and trimmed to remove residual adapters and low-quality nucleotides (the base
caller quality threshold was set at 0.05; resulting reads shorter than 75 nt were discarded).
The transcriptome was generated with the de novo assembly tool, with the following
settings: word size and bubble size were automatically estimated, minimum contig length
was set to 250 nt, and scaffolding was performed to fully exploit pair-end information.

Sequencing reads were mapped to the reference assembly to obtain raw read counts,
allowing the calculation of expression levels. The mapping parameters were set as follows:
mismatch cost = 3; deletion cost = 3; insertion cost = 3; length fraction = 0.75; similarity frac-
tion = 0.98. Gene expression values were calculated as transcript per million (TPM). Contigs
displaying an expression level lower than 1 TPM were discarded, to enable the removal of
contaminants and poorly assembled sequences with low annotation rates [80,81].

The assembly was functionally annotated with the Trinotate pipeline (version 3.2.1,
https://trinotate.github.io), which assigned to each contig Pfam conserved protein do-
mains and Gene Ontology (GO) terms. The completeness and fragmentation of the assem-
bled transcriptome was assessed with BUSCO v.3, based on the Actinopterygii-specific set
of orthologous sequences odb9 [82].

3.2. Assessment and Validation of Tissue-Wide Gene Expression Profile

The available transcriptome data obtained from other adult tissues of the same species
were recovered from the NCBI-SRA database. Namely, the following tissues were selected:
heart (SRX1542182), skeletal muscle (SRX1542183), liver (SRX1538870), and head kidney
(SRX1067737, SRX1067738, SRX1067739) [25,26]. Trimmed sequencing reads were mapped
to the reference transcriptome as described in Section 3.1. Log10 transformed TPM values
were used to build a heat map, based on the hierarchical clustering of a gene subset (those
achieving a minimum TPM value of 1000 in at least one tissue). Gill-specific transcripts
were identified using arbitrarily set thresholds of expression. In detail, only the contigs
falling within the top 10% most highly expressed in the gills and, at the same time, showing
fold-change > 10 in all the pairwise comparisons with the four other tissues were selected.
The gill-specific contig list was subjected to a hypergeometric test on GO terms and Pfam
domains annotations to identify the biological processes (BP), molecular functions (MF),
cellular component (CC), and gene families most prominently associated with the function
of this tissue.

Considering the origin of sequence data from a single specimen, and the potential
existence of inter-individual variation in gene expression related to sex, age, and genetic
factors, we confirmed the gill specificity of six target genes, selected due to their high
expression in this tissue (Table 1), by qRT-PCR, performed on multiple tissues collected
from additional biological replicates. In detail, four C. hamatus adult specimens were
collected close to the Mario Zucchelli Station in November 2017 with the aid of nets,
anesthetized and dissected as explained in Section 3.1, collecting gills, brain, head kidney,
skeletal muscle and liver tissues. Upon RNA extraction, cDNAs were prepared with a
qScript™ Flex cDNA Synthesis Kit (Quanta BioSciences Inc., Gaithersburg, MD, USA) based
on the manufacturer’s instructions. 1 µL of 1:20 diluted cDNA was added to the 15 µL PCR
reaction mix, containing 7.5 µL SsoAdvanced SYBR Green Supermix (Bio-Rad, Hercules,
CA, USA), 0.2 µL of each of the 10 µM primers and water. The reaction was carried out on a
C1000-CFX96 platform (Bio-rad, Hercules, CA, USA), with a two-step protocol comprising
40 amplification cycles at 95◦ (10 s) and 60◦ (20 s), performed after an initial denaturation
step at 95 ◦C for 2 min. At the end of the PCR reaction, a melting curve analysis (from 65 to
95 ◦C) was carried out to assess the specificity of amplification. The levels of expression for
the target genes, normalized on two housekeeping genes, were calculated based on the Ct
method, taking into account the standard deviation provided by three technical replicates.

https://trinotate.github.io
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The forward and reverse primers for the six target genes and the two housekeeping genes,
namely the elongation factor 1 alpha (EF1A) and the 40S ribosomal protein S7 (RPS7)
(Table S2), were designed with Primer3Plus (https://primer3plus.com/), aiming at an
average amplicon size of 120 nt. The two housekeeping genes were selected based on: (i)
stability of expression in C. hamatus, evaluated by a low standard deviation of TPM values
in RNA-seq data (RPS7), or (ii) by previous validation as suitable targets for RT-PCR in
other teleost species (EF1A) [83,84].

Tissue specificity of expression of specific gene targets was further validated in silico
in a cross-species comparison, by analyzing the available RNA-seq datasets from an un-
published study carried out in T. bernacchii (Bioproject accession: PRJNA471228). Trimmed
reads were mapped to the reference transcriptome as described in Section 3.1 to calculate
TPM gene expression values in 19 different adult tissues.

3.3. Comparative Gene Expression Analysis

Selected transcriptome datasets obtained from gills of 13 species pertaining to the
taxon Eupercaria (Table S3) were downloaded from the NCBI-SRA database. For each
species, raw reads were processed, trimmed, and de novo assembled as described in
Section 3.1.

Five out of the species considered, i.e., T. bernacchii, T. newnesi, P. borchgrevinki, P.
charcoti, and D. mawsoni, belong to the Cryonotothenioidea taxon and are adapted to the
Antarctic environment, even though none of them belongs to the Channichthyidae family.
The other eight species were heterogeneous in terms of range of distribution, salinity, and
temperature preference and included the non-Antarctic notothenioid E. maclovinus.

The inter-species comparison of gene expression profiles is a relevant challenge in
comparative genomics. These analyses are indeed hampered by inherent difficulties linked
to different quality of genome/transcriptome assembly and annotation, the activity of
transposable elements, the extent of lineage-specific gene gains, losses, and duplications
which overall complicate orthology inference and may significantly unbalance the calcu-
lation of gene expression levels in different taxa [85]. This issue can be only tackled with
heuristic approaches, such as using a gene subset shared by all the taxa taken into account
for the calculation of gene expression levels. Although this strategy is inevitably limited
to the analysis of single-copy orthologous genes, the obtained expression levels can be
effectively compared across species [80,86].

In the present study, we applied a similar approach to evaluate whether the gills
of Antarctic fish species display any significant molecular signatures of adaptation to
freezing temperatures compared to non-Antarctic Eupercaria. We used a set of single-
copy orthologous genes conserved across all Actinopterygii, extracting from each of the
target transcriptomes the 4584 actinopterygiian BUSCOs included odb9, to which we
manually added 15 additional orthologs with particular relevance in the context of cold
adaptation. This set of orthologous genes was used for the calculation of gene expression
levels through the mapping of the original trimmed reads using Kallisto v.0.43.0, with
100 bootstrap replicates [87]. Whenever multiple RNA-seq libraries were available for a
given species, gene expression data were averaged across samples. Whenever “missing
orthologs” were found, this was considered evidence of lack of expression, and therefore
the given gene was assigned a TPM value = 0. The gene expression matrix obtained was
subjected to a statistical analysis of differential gene expression, to identify differentially
expressed genes (DEGs) with expression values significantly higher in Cryonotothenioidea
species compared to other Eupercaria. This analysis was carried out with the Sleuth
platform (https://github.com/pachterlab/sleuth, accessed on July 2016). The criteria used
for the detection of differentially expressed genes (up-regulated in Cryonotothenioidea)
was based on a q-value < 0.05 in the comparison between the two group species. In
addition, to take into account the presence of outlier species, as well as of possible errors
in the calculation of gene expression levels due to misassembly and undetected chimeric
contigs in some species, we assigned to each orthologous group a consistency score (CS,
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ranging from 0 to 48). CS was calculated based on the number of pairwise comparisons
between each Antarctic and non-Antarctic Eupercaria species where a fold-change >1.5
was attained. The final set of cold adaptation-related candidate genes was selected based
on a consistency score ≥36 (i.e., displaying a significantly higher expression value in ≥75%
pairwise comparisons) and a q-value < 0.05.

3.4. Phylogenetic Analyses

The amino acid sequences of carbonic anhydrases from the 14 Eupercaria species
were predicted from the corresponding assembled sequences. Based on the outcome of
comparative gene expression analysis, only sequences expressed at significant levels in the
gills of all Cryonotothenioidea (TPM > 10) were considered. For classification purpose,
the sequences of human CAs were also included. The sequence of the human carbonic
anhydrase related protein (CARP) and teleosts orthologous sequences were used to provide
an outgroup for tree rooting.

The portion of the sequence corresponding to the CA domain, detected based on the
coordinates of Pfam domain, was extracted from each sequence. In the case of teleost pro-
teins displaying two CA domains, the sequence of both domains was extracted. Sequences
derived from highly fragmented contigs (whose length was lower than 75% of the expected
domain length) were discarded. The resulting sequences of the CA domains were aligned
with MUSCLE [88]. The multiple sequence alignment was then subjected to a ModelTest-
NG [89] to detect the WAG+G+I+F model as the best-fitting model of molecular evolution
for the CA sequence set. MrBayes v.3.2.7a [90] was used to run a Bayesian phylogenetic
analysis, implementing the aforementioned model until the reaching of standard deviation
of split frequencies <0.05 (i.e., 500,000 generations). Run convergence was assessed by the
reaching of ESS values >200 for all estimated parameters, evaluated with a Tracer v.1.7.1
analysis. A similar approach was also used with TCN and TCNL proteins, as detailed in
Supplementary Data Note 5.

Supplementary Materials: The following are available online at https://www.mdpi.com/1422-0
067/22/4/1812/s1, Supplementary file 1: Supplementary Data Notes 1–5, Table S4: details of the
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