Skip to main content

Potential Mechanisms of Sex Ratio Adjustment in Humans and Nonhuman Mammals

  • Chapter
  • First Online:
Choosing Sexes

Part of the book series: Fascinating Life Sciences ((FLS))

  • 930 Accesses

Abstract

There is now substantial evidence that both humans and nonhuman mammals can control offspring sex ratios in response to environmental and social conditions. Yet, because these species utilize a strict system of genetic sex determination, the mechanisms by which mammals may control offspring sex ratios remain elusive. There is evidence that manipulation of offspring sex ratios may occur both before and after fertilization in mammals. As a result, there are many potential targets that could allow for either influences over which sex is initially produced and/or which sex ultimately survives to birth. In this chapter, I will review the many developmental time points during which manipulation of offspring sex ratios could take place in mammals.

And yet, in each human coupling, a thousand million sperm vie for a single egg. Multiply those odds by countless generations, against the odds of your ancestors being alive; meeting; siring this precise son; that exact daughter…

Alan Moore

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aitken RJ, Krausz C (2001) Oxidative stress, DNA damage and the Y chromosome. Reproduction 122(4):497–506

    Article  CAS  PubMed  Google Scholar 

  • Almiñana C, Caballero I, Heath PR, Maleki-Dizaji S, Parrilla I, Cuello C, Gil MA, Vazquez JL, Vazquez JM, Roca J (2014) The battle of the sexes starts in the oviduct: modulation of oviductal transcriptome by X and Y-bearing spermatozoa. BMC Genomics 15(1):1

    Article  Google Scholar 

  • Benendo F (1970) The problem of sex determination in the light of personal observations. Polish Endocrinol 21(200):1954

    Google Scholar 

  • Carson SA (1988) Sex selection: the ultimate in family planning. Fertil Steril 50(1):16

    Article  CAS  PubMed  Google Scholar 

  • Catalano R, Bruckner T, Smith KR (2008) Ambient temperature predicts sex ratios and male longevity. Proc Natl Acad Sci USA 105(6):2244–2247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Catalano R, Bruckner T, Marks AR, Eskenazi B (2006) Exogenous shocks to the human sex ratio: the case of September 11, 2001 in New York City. Hum Reprod 21(12):3127–3131

    Article  CAS  PubMed  Google Scholar 

  • Chaudhury I, Jain M, Halder A (2014) Sperm sex ratio (X: Y Ratio) and its variations. Austin J Reprod Med Infertil 1(1):7

    Google Scholar 

  • Cui K-H (1997) Size differences between human X and Y spermatozoa and prefertilization diagnosis. Mol Hum Reprod 3(1):61–67

    Article  CAS  PubMed  Google Scholar 

  • Diasio RB, Glass R (1971) Effects of pH on the migration of X and Y sperm. Fertil Steril 22(5):303–305

    Article  CAS  PubMed  Google Scholar 

  • Ericsson RJ (1982) Method of increasing the incidence of female offspring. Google Patents

    Google Scholar 

  • Ericsson RJ (1994) Sex selection: sex selection via albumin columns: 20 years of results. Hum Reprod 9(10):1787–1788

    Article  CAS  PubMed  Google Scholar 

  • Flint APF, Albon SD, Jafar SI (1997) Blastocyst development and conceptus sex selection in red deer Cervus elaphus: studies of a free-living population on the Isle of Rum. Gen Comp Endocrinol 106(3):374–383

    Article  CAS  PubMed  Google Scholar 

  • Fox C, Meldrum S, Watson B (1973) Continuous measurement by radio-telemetry of vaginal pH during human coitus. J Reprod Fertil 33(1):69–75

    Article  CAS  PubMed  Google Scholar 

  • García-Herreros M, Bermejo-Álvarez P, Rizos D, Gutiérrez-Adán A, Fahey AG, Lonergan P (2010) Intrafollicular testosterone concentration and sex ratio in individually cultured bovine embryos. Reprod Fertil Dev 22(3):533–538

    Article  PubMed  Google Scholar 

  • Grant VJ, Chamley LW (2010) Can mammalian mothers influence the sex of their offspring peri-conceptually? Reproduction 140(3):425–433

    Article  CAS  PubMed  Google Scholar 

  • Grant VJ, Irwin R (2005) Follicular fluid steroid levels and subsequent sex of bovine embryos. J Exp Zool A Comp Exp Biol 303(12):1120–1125

    Article  PubMed  Google Scholar 

  • Graves JAM (1995) The origin and function of the mammalian Y chromosome and Y-borne genes–an evolving understanding. Bioessays 17(4):311–320

    Article  CAS  PubMed  Google Scholar 

  • Guerrero R (1974) Association of the type and time of insemination within the menstrual cycle with the human sex ratio at birth. N Engl J Med 291(20):1056–1059

    Article  CAS  PubMed  Google Scholar 

  • Guerrero R (1975) Type and time of insemination within the menstrual cycle and the human sex ratio at birth. Stud Fam Plan 6(10):367–371

    Article  CAS  Google Scholar 

  • Gutiérrez-Adán A, Oter M, Martínez-Madrid B, Pintado B, De La Fuente J (2000) Differential expression of two genes located on the X chromosome between male and female in vitro–produced bovine embryos at the blastocyst stage. Mol Reprod Dev 55(2):146–151

    Article  PubMed  Google Scholar 

  • Gutiérrez-Adán A, Perez-Crespo M, Fernandez-Gonzalez R, Ramirez M, Moreira P, Pintado B, Lonergan P, Rizos D (2006) Developmental consequences of sexual dimorphism during pre-implantation embryonic development. Reprod Domest Anim 41(s2):54–62

    Article  PubMed  Google Scholar 

  • Helle S, Laaksonen T, Adamsson A, Paranko J, Huitu O (2008) Female field voles with high testosterone and glucose levels produce male-biased litters. Anim Behav 75(3):1031–1039

    Article  Google Scholar 

  • Holt W, Fazeli A (2016) Sperm selection in the female mammalian reproductive tract. Focus on the oviduct: Hypotheses, mechanisms, and new opportunities. Theriogenology 85(1):105–112

    Article  CAS  PubMed  Google Scholar 

  • Ideta A, Hayama K, Kawashima C, Urakawa M, Miyamoto A, Aoyagi Y (2009) Subjecting holstein heifers to stress during the follicular phase following superovulatory treatment may increase the female sex ratio of embryos. J Reprod Dev 55(5):529–533

    Article  PubMed  Google Scholar 

  • Ishijima S, Okuno M, Mohri H (1991) Zeta potential of human X-and Y-bearing sperm. Int J Androl 14(5):340–347

    Article  CAS  PubMed  Google Scholar 

  • James WH (2000) Analysing data on the sex ratio of human births by cycle day of conception. Hum Reprod 15(5):1206–1208

    Article  CAS  PubMed  Google Scholar 

  • Jongbloet P (2003) The male disadvantage and the seasonal rhythm of sex ratio at the time of conception. Hum Reprod 18(11):2491–2492

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi S, Isotani A, Mise N, Yamamoto M, Fujihara Y, Kaseda K, Nakanishi T, Ikawa M, Hamada H, Abe K (2006) Comparison of gene expression in male and female mouse blastocysts revealed imprinting of the X-linked gene, Rhox5/Pem, at preimplantation stages. Curr Biol 16(2):166–172

    Article  CAS  PubMed  Google Scholar 

  • Larson MA, Kimura K, Kubisch HM, Roberts RM (2001) Sexual dimorphism among bovine embryos in their ability to make the transition to expanded blastocyst and in the expression of the signaling molecule IFN-τ. Proc Natl Acad Sci USA 98(17):9677–9682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macaulay AD, Hamilton CK, King WA, Bartlewski PM (2013) Influence of physiological concentrations of androgens on the developmental competence and sex ratio of in vitro produced bovine embryos. Reprod Biol 13(1):41–50

    Article  PubMed  Google Scholar 

  • Martin JF (1997) Length of the follicular phase, time of insemination, coital rate and the sex of offspring. Hum Reprod 12(3):611–616

    Article  CAS  PubMed  Google Scholar 

  • Masters W (1960) Influence of male ejaculate on vaginal acidity. In: Endocrine dysfunction and infertility, pp 76–78

    Google Scholar 

  • McClung CE (1902) The accessory chromosome—sex determinant? Biol Bull 3(1–2):43–84

    Article  Google Scholar 

  • Moein-Vaziri N, Phillips I, Smith S, Almiňana C, Maside C, Gil MA, Roca J, Martinez EA, Holt WV, Pockley AG (2014) Heat-shock protein A8 restores sperm membrane integrity by increasing plasma membrane fluidity. Reproduction 147(5):719–732

    Article  CAS  PubMed  Google Scholar 

  • Moghissi KS (1966) Cyclic changes of cervical mucus in normal and progestin-treated women. Fertil Steril 17(5):663–675

    Article  CAS  PubMed  Google Scholar 

  • Muschat M (1926) The effect of variation of hydrogen-ion concentration on the motility of human spermatozoa. Surg Gynecol Obstet 42:778–781

    CAS  Google Scholar 

  • Navara KJ (2009) Humans at tropical latitudes produce more females. Biol Lett 5(4):524–527

    Article  PubMed  PubMed Central  Google Scholar 

  • Navara KJ (2010) Programming of offspring sex ratios by maternal stress in humans: assessment of physiological mechanisms using a comparative approach. J Comp Physiol B 180(6):785–796

    Article  PubMed  Google Scholar 

  • Orzack SH, Stubblefield JW, Akmaev VR, Colls P, Munné S, Scholl T, Steinsaltz D, Zuckerman JE (2015) The human sex ratio from conception to birth. Proc Natl Acad Sci USA 112(16):E2102–E2111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-Crespo M, Ramirez M, Fernández-González R, Rizos D, Lonergan P, Pintado B, Gutiérrez-Adán A (2005) Differential sensitivity of male and female mouse embryos to oxidative induced heat-stress is mediated by glucose-6-phosphate dehydrogenase gene expression. Mol Reprod Dev 72(4):502–510

    Article  PubMed  Google Scholar 

  • Pyrzak R (1994) Sex selection: separation of X-and Y-bearing human spermatozoa using albumin gradients. Hum Reprod 9(10):1788–1790

    Article  CAS  PubMed  Google Scholar 

  • Ray P, Conaghan J, Winston R, Handyside A (1995) Increased number of cells and metabolic activity in male human preimplantation embryos following in vitro fertilization. J Reprod Fertil 104(1):165–171

    Article  CAS  PubMed  Google Scholar 

  • Robbins WA, Wei F, Elashoff DA, Wu G, Xun L, Jia J (2008) Y: X sperm ratio in boron-exposed men. J Androl 29(1):115–121

    Article  PubMed  Google Scholar 

  • Rohde W, Porstmann T, Doerner G (1973) Migration of Y-bearing human spermatozoa in cervical mucus. J Reprod Fertil 33(1):167–169

    Article  CAS  PubMed  Google Scholar 

  • Ross MT, Grafham DV, Coffey AJ, Scherer S, McLay K, Muzny D, Platzer M, Howell GR, Burrows C, Bird CP (2005) The DNA sequence of the human X chromosome. Nature 434(7031):325–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saragusty J, Hermes R, Hofer H, Bouts T, Göritz F, Hildebrandt TB (2012) Male pygmy hippopotamus influence offspring sex ratio. Nat Commun 3:697

    Article  PubMed  PubMed Central  Google Scholar 

  • Seguy B (1974) [Methods of natural and voluntary sex selection. Value for the prevention of sex-linked malformations and of certain recurrent abortions]. J Gynecol Obstet Biol Reprod 4(1):145–149

    Google Scholar 

  • Shettles LB (1960a) Human spermatozoa shape in relation to sex ratios. Fertil Steril 12:502–508

    Article  Google Scholar 

  • Shettles LB (1960b) Nuclear morphology of human spermatozoa. Obstet Gynecol 16(1):10

    CAS  PubMed  Google Scholar 

  • Shettles LB, Rorvik DM (2006) How to choose the sex of your baby: the method best supported by scientific evidence. Harmony Books, New York

    Google Scholar 

  • Stolkowski J, Choukroun J (1981) Preconception selection of sex in man. Isr J Med Sci 17(11):1061–1067

    CAS  PubMed  Google Scholar 

  • Tiido T, Rignell-Hydbom A, Jönsson B, Giwercman YL, Rylander L, Hagmar L, Giwercman A (2005) Exposure to persistent organochlorine pollutants associates with human sperm Y: X chromosome ratio. Hum Reprod 20(7):1903–1909

    Article  CAS  PubMed  Google Scholar 

  • Trivers RL, Willard DE (1973) Natural selection of parental ability to vary the sex ratio of offspring. Science 179(4068):90–92

    Article  CAS  PubMed  Google Scholar 

  • Unterberger F (1930) Das problem der willkürlichen Beeinflussung des Geschlechts beim Menschen. Dtsch Med Wochenschr 56(08):304–307

    Article  Google Scholar 

  • Whelan EM (1977) Boy or girl? The sex selection technique that makes all others obsolete. Bobbs‐Merrill, New York

    Google Scholar 

  • Wilcox AJ, Weinberg CR, Baird DD (1995) Timing of sexual intercourse in relation to ovulation—effects on the probability of conception, survival of the pregnancy, and sex of the baby. N Engl J Med 333(23):1517–1521

    Article  CAS  PubMed  Google Scholar 

  • Zarutskie PW, Muller CH, Magone M, Soules MR (1989) The clinical relevance of sex selection techniques. Fertil Steril 52(6):891–905

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Navara, K.J. (2018). Potential Mechanisms of Sex Ratio Adjustment in Humans and Nonhuman Mammals. In: Choosing Sexes. Fascinating Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-71271-0_4

Download citation

Publish with us

Policies and ethics