Skip to main content

Biomaterials for Soft Tissue Engineering: Concepts, Methods, and Applications

  • Chapter
  • First Online:
Biomaterials in Tissue Engineering and Regenerative Medicine

Abstract

Soft tissues connect, support, or surround other structures and organs of the body, including skeletal muscles, tendon vessels, and nerves supplying these components. Also, organs such as the heart, brain, liver, and kidney are considered as soft tissues. Acute and chronic injury may cause transient or permanent damage to organs and soft tissues. If the damage is severe, the natural physiological repair and restoration mechanisms are not possible. The repair or regeneration using tissue engineered (TE) scaffolds has been considered as a clinical solution. TE approach involves the replacement of damaged parts using grafts made from natural or synthetic or composite polymers. Choosing the polymer with appropriate biological, physicochemical, and mechanical properties is the key to make a successful TE scaffold, and it is still a challenging task. Moreover, the fabrication technique and choice of cells or growth factors for encapsulation to develop the graft also play a crucial role. Therefore, in this chapter, we have highlighted the grafts developed for engineering soft tissues such as blood vessels, skin, cartilage, intervertebral disc, tendon, and skeletal muscle. We have restricted our focus on electrospun scaffolds, and injectable hydrogels prepared using polymers include collagen (Col), chitosan (CS), hyaluronic acid (HA) alginate (Alg), poly(caprolactone) (PCL), poly(lactic acid) (PLA), poly(glycolic-lactic acid) (PLGA), and their composites. This chapter will help the readers to understand the choice of materials and fabrication techniques for developing successful TE scaffolds for soft tissue engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albanna MZ, Bou-Akl TH, Walters HL III, Matthew HW (2012) Improving the mechanical properties of chitosan-based heart valve scaffolds using chitosan fibers. J Mech Behav Biomed Mater 5(1):171–180

    Article  CAS  PubMed  Google Scholar 

  • Antunes BP, Moreira AF, Gaspar V, Correia I (2015) Chitosan/arginine–chitosan polymer blends for assembly of nanofibrous membranes for wound regeneration. Carbohydr Polym 130:104–112

    Article  CAS  PubMed  Google Scholar 

  • Ardila D, Tamimi E, Doetschman T, Wagner W, Geest JV (2019) Modulating smooth muscle cell response by the release of TGFβ2 from tubular scaffolds for vascular tissue engineering. J Control Release 299:44–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asghari F, Samiei M, Adibkia K, Akbarzadeh A, Davaran S (2017) Biodegradable and biocompatible polymers for tissue engineering application: a review. Artif Cells, Nanomed Biotechnol 45(2):185–192

    Article  CAS  Google Scholar 

  • Baudis S, Heller C, Liska R, Stampfl J, Bergmeister H, Weigel G (2009) (meth) acrylate-based photoelastomers as tailored biomaterials for artificial vascular grafts. J Polym Sci A Polym Chem 47(10):2664–2676

    Article  CAS  Google Scholar 

  • Bhardwaj N, Chouhan D, Mandal B (2017) Tissue engineered skin and wound healing: current strategies and future directions. Curr Pharm Des 23(24):3455–3482

    Article  CAS  PubMed  Google Scholar 

  • Bhardwaj N, Chouhan D, Mandal BB (2018) 3D functional scaffolds for skin tissue engineering. In: Functional 3D tissue engineering scaffolds. Elsevier, Amsterdam, pp 345–365

    Chapter  Google Scholar 

  • Bhattacharjee M, Coburn J, Centola M, Murab S, Barbero A, Kaplan DL, Martin I, Ghosh S (2015) Tissue engineering strategies to study cartilage development, degeneration and regeneration. Adv Drug Deliv Rev 84:107–122

    Article  CAS  PubMed  Google Scholar 

  • Bishi DK, Mathapati S, Venugopal JR, Guhathakurta S, Cherian KM, Ramakrishna S, Verma RS (2013) Trans-differentiation of human mesenchymal stem cells generates functional hepatospheres on poly (L-lactic acid)-co-poly (ε-caprolactone)/collagen nanofibrous scaffolds. J Mater Chem B 1(32):3972–3984

    Article  CAS  PubMed  Google Scholar 

  • Blanton PL, Biggs NL (1970) Ultimate tensile strength of fetal and adult human tendons. J Biomech 3(2):181–189

    Article  CAS  PubMed  Google Scholar 

  • Boland ED, Telemeco TA, Simpson DG, Wnek GE, Bowlin GL (2004) Utilizing acid pretreatment and electrospinning to improve biocompatibility of poly (glycolic acid) for tissue engineering. J Biomed Mater Res Part B 71(1):144–152

    Article  CAS  Google Scholar 

  • Borselli C, Storrie H, Benesch-Lee F, Shvartsman D, Cezar C, Lichtman JW, Vandenburgh HH, Mooney DJ (2010) Functional muscle regeneration with combined delivery of angiogenesis and myogenesis factors. Proc Natl Acad Sci 107(8):3287–3292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowles RD, Setton LA (2017) Biomaterials for intervertebral disc regeneration and repair. Biomaterials 129:54–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butler DL, Kay MD, Stouffer DC (1986) Comparison of material properties in fascicle-bone units from human patellar tendon and knee ligaments. J Biomech 19(6):425–432

    Article  CAS  PubMed  Google Scholar 

  • Buxboim A, Ivanovska IL, Discher DE (2010) Matrix elasticity, cytoskeletal forces and physics of the nucleus: how deeply do cells ‘feel’outside and in? J Cell Sci 123(3):297–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casper M, Fitzsimmons J, Stone J, Meza A, Huang Y, Ruesink T, O’Driscoll S, Reinholz G (2010) Tissue engineering of cartilage using poly-ɛ-caprolactone nanofiber scaffolds seeded in vivo with periosteal cells. Osteoarthr Cartil 18(7):981–991

    Article  CAS  Google Scholar 

  • Chan TR, Stahl PJ, Li Y, Yu SM (2015) Collagen–gelatin mixtures as wound model, and substrates for VEGF-mimetic peptide binding and endothelial cell activation. Acta Biomater 15:164–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang WG, Niklason LE (2017) A short discourse on vascular tissue engineering. NPJ Regener Med 2(1):1–8

    Article  Google Scholar 

  • Cheema U, Yang SY, Mudera V, Goldspink G, Brown R (2003) 3-D in vitro model of early skeletal muscle development. Cell Motil Cytoskeleton 54(3):226–236

    Article  CAS  PubMed  Google Scholar 

  • Chen J-P, Su C-H (2011) Surface modification of electrospun PLLA nanofibers by plasma treatment and cationized gelatin immobilization for cartilage tissue engineering. Acta Biomater 7(1):234–243

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Huang J, Yu J, Liu S, Gu P (2011a) Electrospun chitosan-graft-poly (ɛ-caprolactone)/poly (ɛ-caprolactone) cationic nanofibrous mats as potential scaffolds for skin tissue engineering. Int J Biol Macromol 48(1):13–19

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Yu Q, Wu B, Lin Z, Pavlos NJ, Xu J, Ouyang H, Wang A, Zheng MH (2011b) Autologous tenocyte therapy for experimental Achilles tendinopathy in a rabbit model. Tissue Eng A 17(15–16):2037–2048

    Article  CAS  Google Scholar 

  • Chen H, Xing X, Tan H, Jia Y, Zhou T, Chen Y, Ling Z, Hu X (2017) Covalently antibacterial alginate-chitosan hydrogel dressing integrated gelatin microspheres containing tetracycline hydrochloride for wound healing. Mater Sci Eng C 70:287–295

    Article  CAS  Google Scholar 

  • Chenite A, Chaput C, Wang D, Combes C, Buschmann M, Hoemann C, Leroux J, Atkinson B, Binette F, Selmani A (2000) Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials 21(21):2155–2161

    Article  CAS  PubMed  Google Scholar 

  • Cheung H-Y, Lau K-T, Lu T-P, Hui D (2007) A critical review on polymer-based bio-engineered materials for scaffold development. Compos Part B 38(3):291–300

    Article  CAS  Google Scholar 

  • Chevrier A, Hoemann C, Sun J, Buschmann M (2011) Temporal and spatial modulation of chondrogenic foci in subchondral microdrill holes by chitosan-glycerol phosphate/blood implants. Osteoarthr Cartil 19(1):136–144

    Article  CAS  Google Scholar 

  • Cima L, Vacanti J, Vacanti C, Ingber D, Mooney D, Langer R (1991) Tissue engineering by cell transplantation using degradable polymer substrates. J Biomech Eng 113(2):143–151

    Article  CAS  PubMed  Google Scholar 

  • Creaney L, Hamilton B (2008) Growth factor delivery methods in the management of sports injuries: the state of play. Br J Sports Med 42(5):314–320

    Article  CAS  PubMed  Google Scholar 

  • de Valence S, Tille J-C, Mugnai D, Mrowczynski W, Gurny R, Möller M, Walpoth BH (2012) Long term performance of polycaprolactone vascular grafts in a rat abdominal aorta replacement model. Biomaterials 33(1):38–47

    Article  PubMed  CAS  Google Scholar 

  • Deng D, Wang W, Wang B, Zhang P, Zhou G, Zhang WJ, Cao Y, Liu W (2014) Repair of Achilles tendon defect with autologous ASCs engineered tendon in a rabbit model. Biomaterials 35(31):8801–8809

    Article  CAS  PubMed  Google Scholar 

  • Dhandayuthapani B, Krishnan UM, Sethuraman S (2010) Fabrication and characterization of chitosan-gelatin blend nanofibers for skin tissue engineering. J Biomed Mater Res B Appl Biomater 94(1):264–272

    PubMed  Google Scholar 

  • Dimatteo R, Darling NJ, Segura T (2018) In situ forming injectable hydrogels for drug delivery and wound repair. Adv Drug Deliv Rev 127:167–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding F, Deng H, Du Y, Shi X, Wang Q (2014) Emerging chitin and chitosan nanofibrous materials for biomedical applications. Nanoscale 6(16):9477–9493

    Article  CAS  PubMed  Google Scholar 

  • Du L, Yang Q, Zhang J, Zhu M, Ma X, Zhang Y, Wang L, Xu B (2019) Engineering a biomimetic integrated scaffold for intervertebral disc replacement. Mater Sci Eng C 96:522–529

    Article  CAS  Google Scholar 

  • Ehterami A, Salehi M, Farzamfar S, Samadian H, Vaez A, Ghorbani S, Ai J, Sahrapeyma H (2019) Chitosan/alginate hydrogels containing alpha-tocopherol for wound healing in rat model. J Drug Deliv Sci Technol 51:204–213

    Article  CAS  Google Scholar 

  • Eke G, Mangir N, Hasirci N, MacNeil S, Hasirci V (2017) Development of a UV crosslinked biodegradable hydrogel containing adipose derived stem cells to promote vascularization for skin wounds and tissue engineering. Biomaterials 129:188–198

    Article  CAS  PubMed  Google Scholar 

  • Enea D, Cecconi S, Calcagno S, Busilacchi A, Manzotti S, Gigante A (2015) One-step cartilage repair in the knee: collagen-covered microfracture and autologous bone marrow concentrate. A pilot study. Knee 22(1):30–35

    Article  CAS  PubMed  Google Scholar 

  • Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689

    Article  CAS  PubMed  Google Scholar 

  • Eslahi N, Abdorahim M, Simchi A (2016) Smart polymeric hydrogels for cartilage tissue engineering: a review on the chemistry and biological functions. Biomacromolecules 17(11):3441–3463

    Article  CAS  PubMed  Google Scholar 

  • Fadaie M, Mirzaei E, Geramizadeh B, Asvar Z (2018) Incorporation of nanofibrillated chitosan into electrospun PCL nanofibers makes scaffolds with enhanced mechanical and biological properties. Carbohydr Polym 199:628–640

    Article  CAS  PubMed  Google Scholar 

  • Farnebo S, Woon CY, Schmitt T, Joubert L-M, Kim M, Pham H, Chang J (2014) Design and characterization of an injectable tendon hydrogel: a novel scaffold for guided tissue regeneration in the musculoskeletal system. Tissue Eng A 20(9–10):1550–1561

    Article  CAS  Google Scholar 

  • Fasolino I, Guarino V, Cirillo V, Ambrosio L (2017) 5-Azacytidine-mediated hMSC behavior on electrospun scaffolds for skeletal muscle regeneration. J Biomed Mater Res A 105(9):2551–2561

    Article  CAS  PubMed  Google Scholar 

  • Feng Y, Li Q, Wu D, Niu Y, Yang C, Dong L, Wang C (2017) A macrophage-activating, injectable hydrogel to sequester endogenous growth factors for in situ angiogenesis. Biomaterials 134:128–142

    Article  CAS  PubMed  Google Scholar 

  • Ghasemi-Mobarakeh L, Prabhakaran MP, Balasubramanian P, Jin G, Valipouri A, Ramakrishna S (2013) Advances in electrospun nanofibers for bone and cartilage regeneration. J Nanosci Nanotechnol 13(7):4656–4671

    Article  CAS  PubMed  Google Scholar 

  • Gilbert-Honick J, Grayson W (2020) Vascularized and innervated skeletal muscle tissue engineering. Adv Healthc Mater 9(1):1900626

    Article  CAS  Google Scholar 

  • Gilbert-Honick J, Iyer SR, Somers SM, Lovering RM, Wagner K, Mao H-Q, Grayson WL (2018) Engineering functional and histological regeneration of vascularized skeletal muscle. Biomaterials 164:70–79

    Article  CAS  PubMed  Google Scholar 

  • Gloria A, Russo T, D’Amora U, Santin M, De Santis R, Ambrosio L (2020) Customised multiphasic nucleus/annulus scaffold for intervertebral disc repair/regeneration. Connect Tissue Res 61(2):152–162

    Article  CAS  PubMed  Google Scholar 

  • Goldman SM, Henderson BE, Walters TJ, Corona BT (2018) Co-delivery of a laminin-111 supplemented hyaluronic acid based hydrogel with minced muscle graft in the treatment of volumetric muscle loss injury. PLoS One 13(1)

    Google Scholar 

  • Goodarzi P, Falahzadeh K, Nematizadeh M, Farazandeh P, Payab M, Larijani B, Beik AT, Arjmand B (2018) Tissue engineered skin substitutes. In: Cell biology and translational medicine, vol 3. Springer, Cham, pp 143–188

    Chapter  Google Scholar 

  • Guenther D, Oks A, Ettinger M, Liodakis E, Petri M, Krettek C, Jagodzinski M, Haasper C (2013) Enhanced migration of human bone marrow stromal cells in modified collagen hydrogels. Int Orthop 37(8):1605–1611

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo B, Qu J, Zhao X, Zhang M (2019) Degradable conductive self-healing hydrogels based on dextran-graft-tetraaniline and N-carboxyethyl chitosan as injectable carriers for myoblast cell therapy and muscle regeneration. Acta Biomater 84:180–193

    Article  CAS  PubMed  Google Scholar 

  • Hagiwara K, Chen G, Kawazoe N, Tabata Y, Komuro H (2016) Promotion of muscle regeneration by myoblast transplantation combined with the controlled and sustained release of bFGFcpr. J Tissue Eng Regen Med 10(4):325–333

    Article  CAS  PubMed  Google Scholar 

  • Hasan A, Memic A, Annabi N, Hossain M, Paul A, Dokmeci MR, Dehghani F, Khademhosseini A (2014) Electrospun scaffolds for tissue engineering of vascular grafts. Acta Biomater 10(1):11–25

    Article  CAS  PubMed  Google Scholar 

  • He W, Ma Z, Teo WE, Dong YX, Robless PA, Lim TC, Ramakrishna S (2009) Tubular nanofiber scaffolds for tissue engineered small-diameter vascular grafts. J Biomed Mater Res Part A 90(1):205–216

    Article  CAS  Google Scholar 

  • Helary C, Zarka M, Giraud-Guille MM (2012) Fibroblasts within concentrated collagen hydrogels favour chronic skin wound healing. J Tissue Eng Regen Med 6(3):225–237

    Article  CAS  PubMed  Google Scholar 

  • Herman I (2007) Physics of the human body. Springer, Cham

    Book  Google Scholar 

  • Huang H, Zhang X, Hu X, Dai L, Zhu J, Man Z, Chen H, Zhou C, Ao Y (2014) Directing chondrogenic differentiation of mesenchymal stem cells with a solid-supported chitosan thermogel for cartilage tissue engineering. Biomed Mater 9(3):035008

    Article  CAS  PubMed  Google Scholar 

  • Hunt JA, Chen R, van Veen T, Bryan N (2014) Hydrogels for tissue engineering and regenerative medicine. J Mater Chem B 2(33):5319–5338

    Article  CAS  PubMed  Google Scholar 

  • Ignatova M, Manolova N, Markova N, Rashkov I (2009) Electrospun non-woven nanofibrous hybrid mats based on chitosan and PLA for wound-dressing applications. Macromol Biosci 9(1):102–111

    Article  CAS  PubMed  Google Scholar 

  • Janik H, Marzec M (2015) A review: fabrication of porous polyurethane scaffolds. Mater Sci Eng C 48:586–591

    Article  CAS  Google Scholar 

  • Ji QX, Deng J, Xing XM, Yuan CQ, Yu XB, Xu QC, Yue J (2010) Biocompatibility of a chitosan-based injectable thermosensitive hydrogel and its effects on dog periodontal tissue regeneration. Carbohydr Polym 82(4):1153–1160

    Article  CAS  Google Scholar 

  • Jiang T, Xu G, Wang Q, Yang L, Zheng L, Zhao J, Zhang X (2017) In vitro expansion impaired the stemness of early passage mesenchymal stem cells for treatment of cartilage defects. Cell Death Dis 8(6):e2851–e2851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang T, Kai D, Liu S, Huang X, Heng S, Zhao J, Chan BQY, Loh XJ, Zhu Y, Mao C (2018) Mechanically cartilage-mimicking poly (PCL-PTHF urethane)/collagen nanofibers induce chondrogenesis by blocking NF–kappa B signaling pathway. Biomaterials 178:281–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin G, Prabhakaran MP, Nadappuram BP, Singh G, Kai D, Ramakrishna S (2012) Electrospun poly (L-lactic acid)-co-poly (ϵ-caprolactone) nanofibres containing silver nanoparticles for skin-tissue engineering. J Biomater Sci Polym Ed 23(18):2337–2352

    Article  CAS  PubMed  Google Scholar 

  • Jin G, Prabhakaran MP, Kai D, Annamalai SK, Arunachalam KD, Ramakrishna S (2013) Tissue engineered plant extracts as nanofibrous wound dressing. Biomaterials 34(3):724–734

    Article  CAS  PubMed  Google Scholar 

  • Ju YM, San Choi J, Atala A, Yoo JJ, Lee SJ (2010) Bilayered scaffold for engineering cellularized blood vessels. Biomaterials 31(15):4313–4321

    Article  CAS  PubMed  Google Scholar 

  • Kashi M, Baghbani F, Moztarzadeh F, Mobasheri H, Kowsari E (2018) Green synthesis of degradable conductive thermosensitive oligopyrrole/chitosan hydrogel intended for cartilage tissue engineering. Int J Biol Macromol 107:1567–1575

    Article  CAS  PubMed  Google Scholar 

  • Kay MA, Glorioso JC, Naldini L (2001) Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nat Med 7(1):33–40

    Article  CAS  PubMed  Google Scholar 

  • Kempson G (1982) Relationship between the tensile properties of articular cartilage from the human knee and age. Ann Rheum Dis 41(5):508–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kerin A, Wisnom M, Adams M (1998) The compressive strength of articular cartilage. Proc Inst Mech Eng H J Eng Med 212(4):273–280

    Article  CAS  Google Scholar 

  • Kheradmandi M, Vasheghani-Farahani E, Ghiaseddin A, Ganji F (2016) Skeletal muscle regeneration via engineered tissue culture over electrospun nanofibrous chitosan/PVA scaffold. J Biomed Mater Res A 104(7):1720–1727

    Article  CAS  PubMed  Google Scholar 

  • Khorshidi S, Solouk A, Mirzadeh H, Mazinani S, Lagaron JM, Sharifi S, Ramakrishna S (2016) A review of key challenges of electrospun scaffolds for tissue-engineering applications. J Tissue Eng Regen Med 10(9):715–738

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Lin B, Kim S, Choi B, Evseenko D, Lee M (2015) TGF-β1 conjugated chitosan collagen hydrogels induce chondrogenic differentiation of human synovium-derived stem cells. J Biol Eng 9(1):1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim H-J, Min DJ, Lee SH, Lim JW, Jung N, Ryu HW, Jeong JH (2019) Tunable 3D Agarose-well to enhance structural integrity of a reconstructed human skin equivalent. Mater Lett 253:298–301

    Article  CAS  Google Scholar 

  • Kishore V, Bullock W, Sun X, Van Dyke WS, Akkus O (2012) Tenogenic differentiation of human MSCs induced by the topography of electrochemically aligned collagen threads. Biomaterials 33(7):2137–2144

    Article  CAS  PubMed  Google Scholar 

  • Kuo SM, Chang SJ, Wang H-Y, Tang SC, Yang S-W (2014) Evaluation of the ability of xanthan gum/gellan gum/hyaluronan hydrogel membranes to prevent the adhesion of postrepaired tendons. Carbohydr Polym 114:230–237

    Article  CAS  PubMed  Google Scholar 

  • Kuraitis D, Zhang P, Zhang Y, Padavan D, McEwan K, Sofrenovic T, McKee D, Zhang J, Griffith M, Cao X (2011) A stromal cell-derived factor-1 releasing matrix enhances the progenitor cell response and blood vessel growth in ischaemic skeletal muscle. Eur Cell Mater 22(109):e23

    Google Scholar 

  • Law JX, Liau LL, Saim A, Yang Y, Idrus R (2017) Electrospun collagen nanofibers and their applications in skin tissue engineering. Tissue Eng Regener Med 14(6):699–718

    Article  Google Scholar 

  • Lee JM, Yeong WY (2016) Design and printing strategies in 3D bioprinting of cell-hydrogels: a review. Adv Healthc Mater 5(22):2856–2865

    Article  CAS  PubMed  Google Scholar 

  • Lee C, Grodzinsky A, Spector M (2003) Biosynthetic response of passaged chondrocytes in a type II collagen scaffold to mechanical compression. J Biomed Mater Res Part A 64(3):560–569

    Article  CAS  Google Scholar 

  • Lee H, Kim W, Lee J, Yoo JJ, Kim GH, Lee SJ (2019) Effect of hierarchical scaffold consisting of aligned dECM Nanofibers and poly (lactide-co-glycolide) struts on the orientation and maturation of human muscle progenitor cells. ACS Appl Mater Interfaces 11(43):39449–39458

    Article  CAS  PubMed  Google Scholar 

  • Levett PA, Melchels FP, Schrobback K, Hutmacher DW, Malda J, Klein TJ (2014) A biomimetic extracellular matrix for cartilage tissue engineering centered on photocurable gelatin, hyaluronic acid and chondroitin sulfate. Acta Biomater 10(1):214–223

    Article  CAS  PubMed  Google Scholar 

  • Li WJ, Danielson KG, Alexander PG, Tuan RS (2003) Biological response of chondrocytes cultured in three-dimensional nanofibrous poly (ϵ-caprolactone) scaffolds. J Biomed Mater Res Part A 67(4):1105–1114

    Article  CAS  Google Scholar 

  • Li W-J, Tuli R, Okafor C, Derfoul A, Danielson KG, Hall DJ, Tuan RS (2005) A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells. Biomaterials 26(6):599–609

    Article  CAS  PubMed  Google Scholar 

  • Li H, Williams GR, Wu J, Lv Y, Sun X, Wu H, Zhu L-M (2017) Thermosensitive nanofibers loaded with ciprofloxacin as antibacterial wound dressing materials. Int J Pharm 517(1–2):135–147

    Article  CAS  PubMed  Google Scholar 

  • Liao I-C, Leong KW (2011) Efficacy of engineered FVIII-producing skeletal muscle enhanced by growth factor-releasing co-axial electrospun fibers. Biomaterials 32(6):1669–1677

    Article  CAS  PubMed  Google Scholar 

  • Liao CJ, Chen CF, Chen JH, Chiang SF, Lin YJ, Chang KY (2002) Fabrication of porous biodegradable polymer scaffolds using a solvent merging/particulate leaching method. J Biomed Mater Res 59(4):676–681

    Article  CAS  PubMed  Google Scholar 

  • Liao N, Unnithan AR, Joshi MK, Tiwari AP, Hong ST, Park C-H, Kim CS (2015) Electrospun bioactive poly (ɛ-caprolactone)–cellulose acetate–dextran antibacterial composite mats for wound dressing applications. Colloids Surf A Physicochem Eng Asp 469:194–201

    Article  CAS  Google Scholar 

  • Liu Y, Skardal A, Shu XZ, Prestwich GD (2008) Prevention of peritendinous adhesions using a hyaluronan-derived hydrogel film following partial-thickness flexor tendon injury. J Orthop Res 26(4):562–569

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu S, Zhao J, Ruan H, Tang T, Liu G, Yu D, Cui W, Fan C (2012) Biomimetic sheath membrane via electrospinning for antiadhesion of repaired tendon. Biomacromolecules 13(11):3611–3619

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Zhou G, Liu Z, Guo M, Jiang X, Taskin MB, Zhang Z, Liu J, Tang J, Bai R (2017) Mussel inspired polynorepinephrine functionalized electrospun polycaprolactone microfibers for muscle regeneration. Sci Rep 7(1):1–10

    CAS  Google Scholar 

  • Lü S, Gao C, Xu X, Bai X, Duan H, Gao N, Feng C, Xiong Y, Liu M (2015) Injectable and self-healing carbohydrate-based hydrogel for cell encapsulation. ACS Appl Mater Interfaces 7(23):13029–13037

    Article  PubMed  CAS  Google Scholar 

  • MacNeil S (2008) Biomaterials for tissue engineering of skin. Mater Today 11(5):26–35

    Article  CAS  Google Scholar 

  • Man Z, Hu X, Liu Z, Huang H, Meng Q, Zhang X, Dai L, Zhang J, Fu X, Duan X (2016) Transplantation of allogenic chondrocytes with chitosan hydrogel-demineralized bone matrix hybrid scaffold to repair rabbit cartilage injury. Biomaterials 108:157–167

    Article  CAS  PubMed  Google Scholar 

  • Martinello T, Bronzini I, Volpin A, Vindigni V, Maccatrozzo L, Caporale G, Bassetto F, Patruno M (2014) Successful recellularization of human tendon scaffolds using adipose-derived mesenchymal stem cells and collagen gel. J Tissue Eng Regen Med 8(8):612–619

    Article  CAS  PubMed  Google Scholar 

  • Matsumura G, Miyagawa-Tomita S, Shin’oka T, Ikada Y, Kurosawa H (2003) First evidence that bone marrow cells contribute to the construction of tissue-engineered vascular autografts in vivo. Circulation 108(14):1729–1734

    Article  PubMed  Google Scholar 

  • Menzoian JO, Koshar AL, Rodrigues N (2011) Alexis carrel, Rene Leriche, Jean Kunlin, and the history of bypass surgery. J Vasc Surg 54(2):571–574

    Article  PubMed  Google Scholar 

  • Metcalfe AD, Ferguson MW (2007) Tissue engineering of replacement skin: the crossroads of biomaterials, wound healing, embryonic development, stem cells and regeneration. J R Soc Interface 4(14):413–437

    Article  CAS  PubMed  Google Scholar 

  • Miguel SP, Ribeiro MP, Coutinho P, Correia IJ (2017) Electrospun polycaprolactone/aloe vera_chitosan nanofibrous asymmetric membranes aimed for wound healing applications. Polymers 9(5):183

    Article  PubMed Central  CAS  Google Scholar 

  • Miguel SP, Figueira DR, Simões D, Ribeiro MP, Coutinho P, Ferreira P, Correia IJ (2018) Electrospun polymeric nanofibres as wound dressings: a review. Colloids Surf B: Biointerfaces 169:60–71

    Article  CAS  PubMed  Google Scholar 

  • Mohabatpour F, Karkhaneh A, Sharifi AM (2016) A hydrogel/fiber composite scaffold for chondrocyte encapsulation in cartilage tissue regeneration. RSC Adv 6(86):83135–83145

    Article  CAS  Google Scholar 

  • Mondschein RJ, Kanitkar A, Williams CB, Verbridge SS, Long TE (2017) Polymer structure-property requirements for stereolithographic 3D printing of soft tissue engineering scaffolds. Biomaterials 140:170–188

    Article  CAS  PubMed  Google Scholar 

  • Moshiri A, Oryan A, Meimandi-Parizi A (2015) Synthesis, development, characterization and effectiveness of bovine pure platelet gel-collagen-polydioxanone bioactive graft on tendon healing. J Cell Mol Med 19(6):1308–1332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mouthuy P-A, Zargar N, Hakimi O, Lostis E, Carr A (2015) Fabrication of continuous electrospun filaments with potential for use as medical fibres. Biofabrication 7(2):025006

    Article  PubMed  CAS  Google Scholar 

  • Naderi-Meshkin H, Andreas K, Matin MM, Sittinger M, Bidkhori HR, Ahmadiankia N, Bahrami AR, Ringe J (2014) Chitosan-based injectable hydrogel as a promising in situ forming scaffold for cartilage tissue engineering. Cell Biol Int 38(1):72–84

    Article  CAS  PubMed  Google Scholar 

  • Naghashzargar E, Farè S, Catto V, Bertoldi S, Semnani D, Karbasi S, Tanzi MC (2015) Nano/micro hybrid scaffold of PCL or P3HB nanofibers combined with silk fibroin for tendon and ligament tissue engineering. J Appl Biomater Funct Mater 13(2):156–168

    Google Scholar 

  • Nakayama KH, Alcazar C, Yang G, Quarta M, Paine P, Doan L, Davies A, Rando TA, Huang NF (2018) Rehabilitative exercise and spatially patterned nanofibrillar scaffolds enhance vascularization and innervation following volumetric muscle loss. NPJ Regen Med 3(1):1–8

    Article  CAS  Google Scholar 

  • Namba J, Shimada K, Saito M, Murase T, Yamada H, Yoshikawa H (2007) Modulation of peritendinous adhesion formation by alginate solution in a rabbit flexor tendon model. J Biomed Mater Res Part B 80(1):273–279

    Article  CAS  Google Scholar 

  • Narayanan N, Jiang C, Wang C, Uzunalli G, Whittern N, Chen D, Jones OG, Kuang S, Deng M (2020) Harnessing Fiber diameter-dependent effects of myoblasts toward biomimetic scaffold-based skeletal muscle regeneration. Front Bioeng Biotechnol 8:203

    Article  PubMed  PubMed Central  Google Scholar 

  • Nerurkar NL, Mauck RL, Elliott DM (2008) Integrating theoretical and experimental methods for functional tissue engineering of the annulus fibrosus. Spine 33(25):2691

    Article  PubMed  PubMed Central  Google Scholar 

  • Nerurkar NL, Elliott DM, Mauck RL (2010) Mechanical design criteria for intervertebral disc tissue engineering. J Biomech 43(6):1017–1030

    Article  PubMed  PubMed Central  Google Scholar 

  • Nöth U, Rackwitz L, Heymer A, Weber M, Baumann B, Steinert A, Schütze N, Jakob F, Eulert J (2007) Chondrogenic differentiation of human mesenchymal stem cells in collagen type I hydrogels. J Biomed Mater Res Part A 83(3):626–635

    Article  CAS  Google Scholar 

  • O'Halloran DM, Pandit AS (2007) Tissue-engineering approach to regenerating the intervertebral disc. Tissue Eng 13(8):1927–1954

    Article  CAS  PubMed  Google Scholar 

  • Organization WHO (2010) Injuries and violence: the facts. WHO, Geneva

    Google Scholar 

  • Oryan A, Kamali A, Moshiri A, Baharvand H, Daemi H (2018) Chemical crosslinking of biopolymeric scaffolds: current knowledge and future directions of crosslinked engineered bone scaffolds. Int J Biol Macromol 107:678–688

    Article  CAS  PubMed  Google Scholar 

  • Pantelic MN, Larkin LM (2018) Stem cells for skeletal muscle tissue engineering. Tissue Eng Part B Rev 24(5):373–391

    Article  PubMed  Google Scholar 

  • Pereira R, Carvalho A, Vaz DC, Gil M, Mendes A, Bártolo P (2013) Development of novel alginate based hydrogel films for wound healing applications. Int J Biol Macromol 52:221–230

    Article  CAS  PubMed  Google Scholar 

  • Peterson GI, Schwartz JJ, Zhang D, Weiss BM, Ganter MA, Storti DW, Boydston AJ (2016) Production of materials with spatially-controlled cross-link density via vat photopolymerization. ACS Appl Mater Interfaces 8(42):29037–29043

    Article  CAS  PubMed  Google Scholar 

  • Powell HM, Supp DM, Boyce ST (2008) Influence of electrospun collagen on wound contraction of engineered skin substitutes. Biomaterials 29(7):834–843

    Article  CAS  PubMed  Google Scholar 

  • Pulkkinen H, Tiitu V, Valonen P, Jurvelin J, Rieppo L, Töyräs J, Silvast T, Lammi M, Kiviranta I (2013) Repair of osteochondral defects with recombinant human type II collagen gel and autologous chondrocytes in rabbit. Osteoarthr Cartil 21(3):481–490

    Article  CAS  Google Scholar 

  • Qazi TH, Mooney DJ, Pumberger M, Geissler S, Duda GN (2015) Biomaterials based strategies for skeletal muscle tissue engineering: existing technologies and future trends. Biomaterials 53:502–521

    Article  CAS  PubMed  Google Scholar 

  • Qiu Y, Lim JJ, Scott L Jr, Adams RC, Bui HT, Temenoff JS (2011) PEG-based hydrogels with tunable degradation characteristics to control delivery of marrow stromal cells for tendon overuse injuries. Acta Biomater 7(3):959–966

    Article  CAS  PubMed  Google Scholar 

  • Qu J, Zhao X, Liang Y, Zhang T, Ma PX, Guo B (2018) Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing. Biomaterials 183:185–199

    Article  CAS  PubMed  Google Scholar 

  • Quapp K, Weiss J (1998) Material characterization of human medial collateral ligament. J Biomech Eng 120(6):757–763

    Article  CAS  PubMed  Google Scholar 

  • Radhakrishnan J, Subramanian A, Krishnan UM, Sethuraman S (2017) Injectable and 3D bioprinted polysaccharide hydrogels: from cartilage to osteochondral tissue engineering. Biomacromolecules 18(1):1–26

    Article  CAS  PubMed  Google Scholar 

  • Rhim C, Lowell DA, Reedy MC, Slentz DH, Zhang SJ, Kraus WE, Truskey GA (2007) Morphology and ultrastructure of differentiating three-dimensional mammalian skeletal muscle in a collagen gel. Muscle Nerve 36(1):71–80

    Article  PubMed  Google Scholar 

  • Rho KS, Jeong L, Lee G, Seo B-M, Park YJ, Hong S-D, Roh S, Cho JJ, Park WH, Min B-M (2006) Electrospinning of collagen nanofibers: effects on the behavior of normal human keratinocytes and early-stage wound healing. Biomaterials 27(8):1452–1461

    Article  CAS  PubMed  Google Scholar 

  • Rossi CA, Flaibani M, Blaauw B, Pozzobon M, Figallo E, Reggiani C, Vitiello L, Elvassore N, De Coppi P (2011) In vivo tissue engineering of functional skeletal muscle by freshly isolated satellite cells embedded in a photopolymerizable hydrogel. FASEB J 25(7):2296–2304

    Article  CAS  PubMed  Google Scholar 

  • Rujitanaroj PO, Pimpha N, Supaphol P (2008) Wound-dressing materials with antibacterial activity from electrospun gelatin fiber mats containing silver nanoparticles. Polymer 49(21):4723–4732

    Article  CAS  Google Scholar 

  • Schmitt A, Rödel P, Anamur C, Seeliger C, Imhoff AB, Herbst E, Vogt S, van Griensven M, Winter G, Engert J (2015) Calcium alginate gels as stem cell matrix–making paracrine stem cell activity available for enhanced healing after surgery. PLoS One 10(3):e0118937

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schnabel LV, Lynch ME, van der Meulen MC, Yeager AE, Kornatowski MA, Nixon AJ (2009) Mesenchymal stem cells and insulin-like growth factor-I gene-enhanced mesenchymal stem cells improve structural aspects of healing in equine flexor digitorum superficialis tendons. J Orthop Res 27(10):1392–1398

    Article  CAS  PubMed  Google Scholar 

  • Schneider DC (1983) Viscoelasticity and tearing strength of the human skin. University of California, Berkley, CA

    Google Scholar 

  • Schneider U, Rackwitz L, Andereya S, Siebenlist S, Fensky F, Reichert J, Löer I, Barthel T, Rudert M, Nöth U (2011) A prospective multicenter study on the outcome of type I collagen hydrogel–based autologous chondrocyte implantation (CaReS) for the repair of articular cartilage defects in the knee. Am J Sports Med 39(12):2558–2565

    Article  PubMed  Google Scholar 

  • Schuurman W, Levett PA, Pot MW, van Weeren PR, Dhert WJ, Hutmacher DW, Melchels FP, Klein TJ, Malda J (2013) Gelatin-methacrylamide hydrogels as potential biomaterials for fabrication of tissue-engineered cartilage constructs. Macromol Biosci 13(5):551–561

    Article  CAS  PubMed  Google Scholar 

  • Seifu DG, Purnama A, Mequanint K, Mantovani D (2013) Small-diameter vascular tissue engineering. Nat Rev Cardiol 10(7):410

    Article  CAS  PubMed  Google Scholar 

  • Shamsah AH, Cartmell SH, Richardson SM, Bosworth LA (2019a) Mimicking the annulus Fibrosus using electrospun polyester blended scaffolds. Nano 9(4):537

    CAS  Google Scholar 

  • Shamsah AH, Cartmell SH, Richardson SM, Bosworth LA (2019b) Tissue engineering the annulus Fibrosus using 3D rings of electrospun PCL: PLLA angle-ply Nanofiber sheets. Front Bioeng Biotechnol 7:437

    Article  PubMed  Google Scholar 

  • Shinoka T, Breuer CK, Tanel RE, Zund G, Miura T, Ma PX, Langer R, Vacanti JP, Mayer JE (1995) Tissue engineering heart valves: valve leaflet replacement study in a lamb model. Ann Thorac Surg 60:S513–S516

    Article  CAS  PubMed  Google Scholar 

  • Silva JC, Udangawa RN, Chen J, Mancinelli CD, Garrudo FF, Mikael PE, Cabral JM, Ferreira FC, Linhardt RJ (2020) Kartogenin-loaded coaxial PGS/PCL aligned nanofibers for cartilage tissue engineering. Mater Sci Eng C 107:110291

    Article  CAS  Google Scholar 

  • Simon S (1998) Muscles: our muscular system. HarperCollins Publishers, New York

    Google Scholar 

  • Smith A, Passey S, Greensmith L, Mudera V, Lewis M (2012) Characterization and optimization of a simple, repeatable system for the long term in vitro culture of aligned myotubes in 3D. J Cell Biochem 113(3):1044–1053

    Article  CAS  PubMed  Google Scholar 

  • Smoak MM, Han A, Watson E, Kishan A, Grande-Allen KJ, Cosgriff-Hernandez E, Mikos AG (2019) Fabrication and characterization of electrospun decellularized muscle-derived scaffolds. Tissue Eng Part C Methods 25(5):276–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stegemann JP, Kaszuba SN, Rowe SL (2007) Advances in vascular tissue engineering using protein-based biomaterials. Tissue Eng 13(11):2601–2613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun X, Yin H, Wang Y, Lu J, Shen X, Lu C, Tang H, Meng H, Yang S, Yu W (2018) In situ articular cartilage regeneration through endogenous reparative cell homing using a functional bone marrow-specific scaffolding system. ACS Appl Mater Interfaces 10(45):38715–38728

    Article  CAS  PubMed  Google Scholar 

  • Sundaramurthi D, Krishnan UM, Sethuraman S (2014) Electrospun nanofibers as scaffolds for skin tissue engineering. Polym Rev 54(2):348–376

    Article  CAS  Google Scholar 

  • Tang X, Saveh-Shemshaki N, Kan H-M, Khan Y, Laurencin CT (2019) Biomimetic Electroconductive Nanofibrous matrices for skeletal muscle regenerative engineering. Regen Eng Transl Med 6:228–237

    Article  PubMed  PubMed Central  Google Scholar 

  • Thu H-E, Zulfakar MH, Ng S-F (2012) Alginate based bilayer hydrocolloid films as potential slow-release modern wound dressing. Int J Pharm 434(1–2):375–383

    Article  CAS  PubMed  Google Scholar 

  • Tiburcy M, Meyer T, Soong PL, Zimmermann W-H (2014) Collagen-based engineered heart muscle. In: Cardiac tissue engineering. Springer, Cham, pp 167–176

    Chapter  Google Scholar 

  • Tillman BW, Yazdani SK, Lee SJ, Geary RL, Atala A, Yoo JJ (2009) The in vivo stability of electrospun polycaprolactone-collagen scaffolds in vascular reconstruction. Biomaterials 30(4):583–588

    Article  CAS  PubMed  Google Scholar 

  • Uppal R, Ramaswamy GN, Arnold C, Goodband R, Wang Y (2011) Hyaluronic acid nanofiber wound dressing—production, characterization, and in vivo behavior. J Biomed Mater Res B Appl Biomater 97(1):20–29

    Article  PubMed  CAS  Google Scholar 

  • Uysal O, Arslan E, Gulseren G, Kilinc MC, Dogan I, Ozalp H, Caglar YS, Guler MO, Tekinay AB (2019) Collagen peptide presenting Nanofibrous scaffold for intervertebral disc regeneration. ACS Applied Bio Materials 2(4):1686–1695

    Article  CAS  PubMed  Google Scholar 

  • Vacanti JP, Langer R (1999) Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet 354:S32–S34

    Article  Google Scholar 

  • Vandenburgh HH, Karlisch P, Farr L (1988) Maintenance of highly contractile tissue-cultured avian skeletal myotubes in collagen gel. In Vitro Cell Dev Biol 24(3):166–174

    Article  CAS  PubMed  Google Scholar 

  • Venugopal JR, Zhang Y, Ramakrishna S (2006) In vitro culture of human dermal fibroblasts on electrospun polycaprolactone collagen nanofibrous membrane. Artif Organs 30(6):440–446

    Article  CAS  PubMed  Google Scholar 

  • Vijayavenkataraman S, Lu W, Fuh J (2016) 3D bioprinting of skin: a state-of-the-art review on modelling, materials, and processes. Biofabrication 8(3):032001

    Article  CAS  PubMed  Google Scholar 

  • von Burkersroda F, Schedl L, Göpferich A (2002) Why degradable polymers undergo surface erosion or bulk erosion. Biomaterials 23(21):4221–4231

    Article  Google Scholar 

  • Wakitani S, Goto T, Young RG, Mansour JM, Goldberg VM, Caplan AI (1998) Repair of large full-thickness articular cartilage defects with allograft articular chondrocytes embedded in a collagen gel. Tissue Eng 4(4):429–444

    Article  CAS  PubMed  Google Scholar 

  • Walden G, Liao X, Donell S, Raxworthy MJ, Riley GP, Saeed A (2017) A clinical, biological, and biomaterials perspective into tendon injuries and regeneration. Tissue Eng Part B Rev 23(1):44–58

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Zhang C-L, Zhang Q, Li P (2011) Composite electrospun nanomembranes of fish scale collagen peptides/chito-oligosaccharides: antibacterial properties and potential for wound dressing. Int J Nanomed 6:667

    CAS  Google Scholar 

  • Wang L-S, Du C, Toh WS, Wan AC, Gao SJ, Kurisawa M (2014a) Modulation of chondrocyte functions and stiffness-dependent cartilage repair using an injectable enzymatically crosslinked hydrogel with tunable mechanical properties. Biomaterials 35(7):2207–2217

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Cao L, Shansky J, Wang Z, Mooney D, Vandenburgh H (2014b) Minimally invasive approach to the repair of injured skeletal muscle with a shape-memory scaffold. Mol Ther 22(8):1441–1449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Zhang W, Xie C, Wen F, Ma C, Lin N, San Thian E, Wang X (2019) Geometric anisotropy on biomaterials surface for vascular scaffold design: engineering and biological advances. J Phys: Mater 2(3):032003

    CAS  Google Scholar 

  • Wegst U, Ashby M (2004) The mechanical efficiency of natural materials. Philos Mag 84(21):2167–2186

    Article  CAS  Google Scholar 

  • Wehrhan F, Nkenke E, Melnychenko I, Amann K, Schlegel KA, Goerlach C, Zimmermann WH, Schultze-Mosgau S (2010) Skin repair using a porcine collagen I/III membrane—vascularization and epithelization properties. Dermatol Surg 36(6):919–930

    Article  CAS  PubMed  Google Scholar 

  • Wise SG, Byrom MJ, Waterhouse A, Bannon PG, Ng MK, Weiss AS (2011) A multilayered synthetic human elastin/polycaprolactone hybrid vascular graft with tailored mechanical properties. Acta Biomater 7(1):295–303

    Article  CAS  PubMed  Google Scholar 

  • Wright L, McKeon-Fischer K, Cui Z, Nair L, Freeman J (2014) PDLA/PLLA and PDLA/PCL nanofibers with a chitosan-based hydrogel in composite scaffolds for tissue engineered cartilage. J Tissue Eng Regen Med 8(12):946–954

    Article  CAS  PubMed  Google Scholar 

  • Xie J, MacEwan MR, Ray WZ, Liu W, Siewe DY, Xia Y (2010) Radially aligned, electrospun nanofibers as dural substitutes for wound closure and tissue regeneration applications. ACS Nano 4(9):5027–5036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Q, Xu H, Hurday S, Xu B (2016) Construction strategy and progress of whole intervertebral disc tissue engineering. Orthop Surg 8(1):11–18

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang F, Tadepalli V, Wiley BJ (2017) 3D printing of a double network hydrogel with a compression strength and elastic modulus greater than those of cartilage. ACS Biomater Sci Eng 3(5):863–869

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Cao H, Gao S, Yang M, Lyu J, Tang K (2018) Effect of tendon stem cells in chitosan/β-Glycerophosphate/collagen hydrogel on Achilles tendon healing in a rat model. Med Sci Monit Int Med J Exp Clin Res 24:4633

    Google Scholar 

  • Ye H, Zhang K, Kai D, Li Z, Loh XJ (2018) Polyester elastomers for soft tissue engineering. Chem Soc Rev 47(12):4545–4580

    Article  CAS  PubMed  Google Scholar 

  • Yokoyama A, Sekiya I, Miyazaki K, Ichinose S, Hata Y, Muneta T (2005) In vitro cartilage formation of composites of synovium-derived mesenchymal stem cells with collagen gel. Cell Tissue Res 322(2):289–298

    Article  CAS  PubMed  Google Scholar 

  • Yuan L, Li B, Yang J, Ni Y, Teng Y, Guo L, Fan H, Fan Y, Zhang X (2016) Effects of composition and mechanical property of injectable collagen I/II composite hydrogels on chondrocyte behaviors. Tissue Eng A 22(11–12):899–906

    Article  CAS  Google Scholar 

  • Yuan D, Chen Z, Xiang X, Deng S, Liu K, Xiao D, Deng L, Feng G (2019) The establishment and biological assessment of a whole tissue-engineered intervertebral disc with PBST fibers and a chitosan hydrogel in vitro and in vivo. J Biomed Mater Res B Appl Biomater 107(7):2305–2316

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Venugopal J, Huang Z-M, Lim CT, Ramakrishna S (2006) Crosslinking of the electrospun gelatin nanofibers. Polymer 47(8):2911–2917

    Article  CAS  Google Scholar 

  • Zhang Y, Yu J, Ren K, Zuo J, Ding J, Chen X (2019) Thermosensitive hydrogels as scaffolds for cartilage tissue engineering. Biomacromolecules 20(4):1478–1492

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Lang Q, Yildirimer L, Lin ZY, Cui W, Annabi N, Ng KW, Dokmeci MR, Ghaemmaghami AM, Khademhosseini A (2016) Photocrosslinkable gelatin hydrogel for epidermal tissue engineering. Adv Healthc Mater 5(1):108–118

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Sun X, Yildirimer L, Lang Q, Lin ZYW, Zheng R, Zhang Y, Cui W, Annabi N, Khademhosseini A (2017) Cell infiltrative hydrogel fibrous scaffolds for accelerated wound healing. Acta Biomater 49:66–77

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Yang D, Chen X, Xu Q, Lu F, Nie J (2008) Electrospun water-soluble carboxyethyl chitosan/poly (vinyl alcohol) nanofibrous membrane as potential wound dressing for skin regeneration. Biomacromolecules 9(1):349–354

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Cao Y, Pan J, Liu Y (2010) Macro-alignment of electrospun fibers for vascular tissue engineering. J Biomed Mater Res Part B 92(2):508–516

    Google Scholar 

Download references

Acknowledgement

Author C.K.B.V thank the Indian Institute of Technology Madras, India, for the financial support in terms of fellowship and infrastructure support. We also thank the Science & Engineering Research Board (SERB), Department of Science and Technology (Project no. ECR/2017/003064), Government of India for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vignesh Muthuvijayan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Balavigneswaran, C.K., Muthuvijayan, V. (2021). Biomaterials for Soft Tissue Engineering: Concepts, Methods, and Applications. In: Bhaskar, B., Sreenivasa Rao, P., Kasoju, N., Nagarjuna, V., Baadhe, R.R. (eds) Biomaterials in Tissue Engineering and Regenerative Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-16-0002-9_11

Download citation

Publish with us

Policies and ethics