Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Solar utilization beyond photosynthesis

Abstract

Natural photosynthesis is an efficient biochemical process which converts solar energy into energy-rich carbohydrates. By understanding the key photoelectrochemical processes and mechanisms that underpin natural photosynthesis, advanced solar utilization technologies have been developed that may be used to provide sustainable energy to help address climate change. The processes of light harvesting, catalysis and energy storage in natural photosynthesis have inspired photovoltaics, photoelectrocatalysis and photo-rechargeable battery technologies. In this Review, we describe how advanced solar utilization technologies have drawn inspiration from natural photosynthesis, to find sustainable solutions to the challenges faced by modern society. We summarize the uses of advanced solar utilization technologies, such as converting solar energy to electrical and chemical energy, electrochemical storage and conversion, and associated thermal tandem technologies. Both the foundational mechanisms and typical materials and devices are reported. Finally, potential future solar utilization technologies are presented that may mimic, and even outperform, natural photosynthesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The basic natural photosynthesis processes and the divided four key photoelectrochemical processes.
Fig. 2: Natural photosynthesis inspired solar to power technology.
Fig. 3: Natural photosynthesis inspired solar to chemical technology.
Fig. 4: Natural photosynthesis inspired solar to electrochemical storage technology.
Fig. 5: Natural photosynthesis inspired solar to electrochemical conversion technology.
Fig. 6: Advanced solar to thermal technology.
Fig. 7: Solar energy conversion efficiency.

Similar content being viewed by others

References

  1. europa. Climate change policies. European Environment Agency https://www.eea.europa.eu/themes/climate/policy-context (2020).

  2. Hoegh-Guldberg, O. et al. The human imperative of stabilizing global climate change at 1.5 °C. Science 365, 1263 (2019).

    Article  Google Scholar 

  3. Dobson, A., Rowe, Z., Berger, J., Wholey, P. & Caro, T. Biodiversity loss due to more than climate change. Science 374, 698–699 (2021).

    Article  Google Scholar 

  4. Lewis, N. S. Research opportunities to advance solar energy utilization. Science 351, aad1920 (2016). This work presents an insightful review of developments and research opportunities for advance solar energy utilization technologies.

    Article  Google Scholar 

  5. Wang, Q., Pornrungroj, C., Linley, S. & Reisner, E. Strategies to improve light utilization in solar fuel synthesis. Nat. Energy 7, 13–24 (2022).

    Article  Google Scholar 

  6. Croce, R. & van Amerongen, H. Light harvesting in oxygenic photosynthesis: structural biology meets spectroscopy. Science 369, 933 (2020).

    Article  Google Scholar 

  7. Su, X. et al. Structure and assembly mechanism of plant C2S2M2-type PSII–LHCII supercomplex. Science 357, 815–820 (2017).

    Article  CAS  Google Scholar 

  8. Qin, X., Suga, M., Kuang, T. & Shen, J.-R. Structural basis for energy transfer pathways in the plant PSI–LHCI supercomplex. Science 348, 989–995 (2015).

    Article  CAS  Google Scholar 

  9. Duffy, C. D. P. The simplicity of robust light harvesting. Science 368, 1427–1428 (2020).

    Article  CAS  Google Scholar 

  10. Richardson, K. H. et al. Functional basis of electron transport within photosynthetic complex I. Nat. Commun. 12, 5387 (2021).

    Article  CAS  Google Scholar 

  11. Schuller, J. M. et al. Structural adaptations of photosynthetic complex I enable ferredoxin-dependent electron transfer. Science 363, 257–260 (2019).

    Article  CAS  Google Scholar 

  12. Gisriel, C. et al. Structure of a symmetric photosynthetic reaction center-photosystem. Science 357, 1021–1025 (2017).

    Article  CAS  Google Scholar 

  13. Suga, M. et al. An oxyl/oxo mechanism for oxygen-oxygen coupling in PSII revealed by an X-ray free-electron laser. Science 366, 334–338 (2019).

    Article  CAS  Google Scholar 

  14. Britt, R. D. & Marchiori, D. A. Photosystem II, poised for O2 formation. Science 366, 305–306 (2019).

    Article  CAS  Google Scholar 

  15. Hahn, A., Vonck, J., Mills, D. J., Meier, T. & Kuehlbrandt, W. Structure, mechanism, and regulation of the chloroplast ATP synthase. Science 360, 620 (2018).

    Article  CAS  Google Scholar 

  16. Kern, J. et al. Simultaneous femtosecond X-ray spectroscopy and diffraction of photosystem II at room temperature. Science 340, 491–495 (2013).

    Article  CAS  Google Scholar 

  17. Zhang, J. Z. & Reisner, E. Advancing photosystem II photoelectrochemistry for semi-artificial photosynthesis. Nat. Rev. Chem. 4, 6–21 (2020). This review summarizes advances in electrode design and biomaterial interface for semi-artificial photosynthesis through PSII photoelectrochemistry knowledge.

    Article  CAS  Google Scholar 

  18. Proppe, A. H. et al. Bioinspiration in light harvesting and catalysis. Nat. Rev. Mater. 5, 828–846 (2020). This review provides comprehensive insights into bioinspiration in light harvesting and catalysis of natural photosynthesis, mainly focusing on the molecules and material design.

    Article  CAS  Google Scholar 

  19. Dmytrenko, O., Kunikowska, A., Utter, D., Stewart, F. & Cavanaugh, C. A novel energy-efficient version of the Calvin cycle. N. Biotechnol. 44, S28–S29 (2018).

    Article  Google Scholar 

  20. Schappi, R. et al. Drop-in fuels from sunlight and air. Nature 601, 63–68 (2022).

    Article  CAS  Google Scholar 

  21. Ghausi, M. A. et al. CO2 overall splitting by a bifunctional metal-free electrocatalyst. Angew. Chem. Int. Ed. 57, 13135–13139 (2018).

    Article  CAS  Google Scholar 

  22. Xie, J., Huang, Y., Wu, M. & Wang, Y. Electrochemical carbon dioxide splitting. ChemElectroChem 6, 1587–1604 (2019).

    Article  CAS  Google Scholar 

  23. Maugh, T. H. A new light on photosynthesis. Science 213, 994–996 (1981).

    Article  Google Scholar 

  24. Nocera, D. G. The artificial leaf. Acc. Chem. Res. 45, 767–776 (2012).

    Article  CAS  Google Scholar 

  25. Geisz, J. F. et al. Six-junction III–V solar cells with 47.1% conversion efficiency under 143 Suns concentration. Nat. Energy 5, 326–335 (2020).

    Article  CAS  Google Scholar 

  26. National Renewable Energy Laboratory (NREL). Best research-cell efficiency chart. NREL https://www.nrel.gov/pv/cell-efficiency.html (2022).

  27. Senthil, R. & Yuvaraj, S. A comprehensive review on bioinspired solar photovoltaic cells. Int. J. Energy Res. 43, 1068–1081 (2019).

    Article  Google Scholar 

  28. Oregan, B. & Gratzel, M. A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991). This article reports the first example of DSSCs.

    Article  CAS  Google Scholar 

  29. Hug, H., Bader, M., Mair, P. & Glatzel, T. Biophotovoltaics: natural pigments in dye-sensitized solar cells. Appl. Energy 115, 216–225 (2014).

    Article  CAS  Google Scholar 

  30. McDermott, G. et al. Crystal-structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 374, 517–521 (1995).

    Article  CAS  Google Scholar 

  31. Panda, M. K., Ladomenou, K. & Coutsolelos, A. G. Porphyrins in bio-inspired transformations: light-harvesting to solar cell. Coord. Chem. Rev. 256, 2601–2627 (2012).

    Article  CAS  Google Scholar 

  32. Urbani, M., Graetzel, M., Nazeeruddin, M. K. & Torres, T. Meso-substituted porphyrins for dye-sensitized solar cells. Chem. Rev. 114, 12330–12396 (2014).

    Article  CAS  Google Scholar 

  33. Li, L.-L. & Diau, E. W.-G. Porphyrin-sensitized solar cells. Chem. Soc. Rev. 42, 291–304 (2013).

    Article  CAS  Google Scholar 

  34. Mathew, S. et al. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat. Chem. 6, 242–247 (2014).

    Article  CAS  Google Scholar 

  35. Zeng, K. et al. Molecular engineering strategies for fabricating efficient porphyrin-based dye-sensitized solar cells. Energy Environ. Sci. 13, 1617–1657 (2020).

    Article  Google Scholar 

  36. Park, N.-G. Perovskite solar cells: an emerging photovoltaic technology. Mater. Today 18, 65–72 (2015).

    Article  CAS  Google Scholar 

  37. Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).

    Article  CAS  Google Scholar 

  38. Luo, D., Su, R., Zhang, W., Gong, Q. & Zhu, R. Minimizing non-radiative recombination losses in perovskite solar cells. Nat. Rev. Mater. 5, 44–60 (2020).

    Article  CAS  Google Scholar 

  39. Zhou, Y., Poli, I., Meggiolaro, D., De Angelis, F. & Petrozza, A. Defect activity in metal halide perovskites with wide and narrow bandgap. Nat. Rev. Mater. 6, 986–1002 (2021).

    Article  Google Scholar 

  40. Rombach, F. M., Haque, S. A. & Macdonald, T. J. Lessons learned from spiro-OMeTAD and PTAA in perovskite solar cells. Energy Environ. Sci. 14, 5161–5190 (2021).

    Article  CAS  Google Scholar 

  41. Jung, E. H. et al. Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature 567, 511–515 (2019).

    Article  CAS  Google Scholar 

  42. Li, M. et al. Dopant-free zinc chlorophyll aggregates as an efficient biocompatible hole transporter for perovskite solar cells. ChemSusChem 9, 2862–2869 (2016).

    Article  CAS  Google Scholar 

  43. Kim, G.-W. et al. Hole transport materials in conventional structural (n–i–p) perovskite solar cells: from past to the future. Adv. Energy Mater. 10, 1903403 (2020).

    Article  CAS  Google Scholar 

  44. Vohra, V. Natural dyes and their derivatives integrated into organic solar cells. Materials 11, 2579 (2018).

    Article  CAS  Google Scholar 

  45. Yao, K. et al. Nano-bio hybrids of plasmonic metals/photosynthetic proteins for broad-band light absorption enhancement in organic solar cells. J. Mater. Chem. A 4, 13400–13406 (2016).

    Article  CAS  Google Scholar 

  46. Battaglia, C., Cuevas, A. & De Wolf, S. High-efficiency crystalline silicon solar cells: status and perspectives. Energy Environ. Sci. 9, 1552–1576 (2016).

    Article  CAS  Google Scholar 

  47. Yamaguchi, M. et al. GaAs solar cells grown on Si substrates for space use. Prog. Photovolt. 9, 191–201 (2001).

    Article  CAS  Google Scholar 

  48. Chapin, D. M., Fuller, C. S. & Pearson, G. L. A new silicon p–n junction photocell for converting solar radiation into electrical power. J. Appl. Phys. 25, 676–677 (1954).

    Article  CAS  Google Scholar 

  49. Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32, 510–519 (1961).

    Article  CAS  Google Scholar 

  50. Wrobel, D. From natural photosynthesis to molecular photovoltaics. Mol. Cryst. Liq. Cryst. 627, 4–22 (2016).

    Article  CAS  Google Scholar 

  51. Godin, R. & Durrant, J. R. Dynamics of photoconversion processes: the energetic cost of lifetime gain in photosynthetic and photovoltaic systems. Chem. Soc. Rev. 50, 13372–13409 (2021).

    Article  CAS  Google Scholar 

  52. Berardi, S. et al. Molecular artificial photosynthesis. Chem. Soc. Rev. 43, 7501–7519 (2014).

    Article  CAS  Google Scholar 

  53. Whang, D. R. & Apaydin, D. H. Artificial photosynthesis: learning from nature. ChemPhotoChem 2, 148–160 (2018).

    Article  CAS  Google Scholar 

  54. Wang, Q. & Domen, K. Particulate photocatalysts for light-driven water splitting: mechanisms, challenges, and design strategies. Chem. Rev. 120, 919–985 (2020).

    Article  CAS  Google Scholar 

  55. Kim, J. H., Hansora, D., Sharma, P., Jang, J.-W. & Lee, J. S. Toward practical solar hydrogen production — an artificial photosynthetic leaf-to-farm challenge. Chem. Soc. Rev. 48, 1908–1971 (2019).

    Article  CAS  Google Scholar 

  56. Yoshino, S., Takayama, T., Yamaguchi, Y., Iwase, A. & Kudo, A. CO2 reduction using water as an electron donor over heterogeneous photocatalysts aiming at artificial photosynthesis. Acc. Chem. Res. 55, 966–977 (2022).

    Article  CAS  Google Scholar 

  57. Nasir, J. A. et al. Photocatalytic Z-scheme overall water splitting: recent advances in theory and experiments. Adv. Mater. 33, 2105195 (2021).

    Article  Google Scholar 

  58. Jiang, C., Moniz, S. J. A., Wang, A., Zhang, T. & Tang, J. Photoelectrochemical devices for solar water splitting—materials and challenges. Chem. Soc. Rev. 46, 4645–4660 (2017).

    Article  CAS  Google Scholar 

  59. Liu, J. et al. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 347, 970–974 (2015).

    Article  CAS  Google Scholar 

  60. Song, H., Luo, S. Q., Huang, H. M., Deng, B. W. & Ye, J. H. Solar-driven hydrogen production: recent advances, challenges, and future perspectives. ACS Energy Lett. 7, 1043–1065 (2022).

    Article  CAS  Google Scholar 

  61. Zhang, C. X. et al. A synthetic Mn4Ca-cluster mimicking the oxygen-evolving center of photosynthesis. Science 348, 690–693 (2015).

    Article  CAS  Google Scholar 

  62. Suga, M. et al. Light-induced structural changes and the site of O=O bond formation in PSII caught by XFEL. Nature 543, 131–135 (2017).

    Article  CAS  Google Scholar 

  63. Barber, J. A mechanism for water splitting and oxygen production in photosynthesis. Nat. Plants 3, 17041 (2017).

    Article  CAS  Google Scholar 

  64. Barber, J. Photosynthetic water splitting provides a blueprint for artificial leaf technology. Joule 1, 5–9 (2017).

    Article  Google Scholar 

  65. Zhang, B. & Sun, L. Across the board: Licheng Sun on the mechanism of O−O bond formation in photosystem II. ChemSusChem 12, 3401–3404 (2019).

    Article  CAS  Google Scholar 

  66. Gersten, S. W., Samuels, G. J. & Meyer, T. J. Catalytic oxidation of water by an oxo-bridged ruthenium dimer. J. Am. Chem. Soc. 104, 4029–4030 (1982).

    Article  CAS  Google Scholar 

  67. Yi, J. et al. Electrostatic interactions accelerating water oxidation catalysis via intercatalyst O–O coupling. J. Am. Chem. Soc. 143, 2484–2490 (2021).

    Article  CAS  Google Scholar 

  68. Okamura, M. et al. A pentanuclear iron catalyst designed for water oxidation. Nature 530, 465–468 (2016).

    Article  CAS  Google Scholar 

  69. Nguyen, A. I. et al. Mechanistic investigations of water oxidation by a molecular cobalt oxide analogue: evidence for a highly oxidized intermediate and exclusive terminal oxo participation. J. Am. Chem. Soc. 137, 12865–12872 (2015).

    Article  CAS  Google Scholar 

  70. Wang, Y. et al. Mimicking natural photosynthesis: solar to renewable H2 fuel synthesis by Z-scheme water splitting systems. Chem. Rev. 118, 5201–5241 (2018).

    Article  CAS  Google Scholar 

  71. Maeda, K. Z-scheme water splitting using two different semiconductor photocatalysts. ACS Catal. 3, 1486–1503 (2013).

    Article  CAS  Google Scholar 

  72. Zhao, D. et al. Boron-doped nitrogen-deficient carbon nitride-based Z-scheme heterostructures for photocatalytic overall water splitting. Nat. Energy 6, 388–397 (2021).

    Article  CAS  Google Scholar 

  73. Qiu, B. et al. Integration of redox cocatalysts for artificial photosynthesis. Energy Environ. Sci. 14, 5260–5288 (2021).

    Article  CAS  Google Scholar 

  74. Wang, Q. et al. Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%. Nat. Mater. 15, 611–615 (2016).

    Article  CAS  Google Scholar 

  75. Goto, Y. et al. A particulate photocatalyst water-splitting panel for large-scale solar hydrogen generation. Joule 2, 509–520 (2018).

    Article  CAS  Google Scholar 

  76. Nishiyama, H. et al. Photocatalytic solar hydrogen production from water on a 100 m2 scale. Nature 598, 304–307 (2021).

    Article  CAS  Google Scholar 

  77. Zhao, Y. et al. Two-dimensional-related catalytic materials for solar-driven conversion of COx into valuable chemical feedstocks. Chem. Soc. Rev. 48, 1972–2010 (2019).

    Article  CAS  Google Scholar 

  78. Roy, S. C., Varghese, O. K., Paulose, M. & Grimes, C. A. Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons. ACS Nano 4, 1259–1278 (2010).

    Article  CAS  Google Scholar 

  79. Wang, Y. et al. Direct and indirect Z-scheme heterostructure-coupled photosystem enabling cooperation of CO2 reduction and H2O oxidation. Nat. Commun. 11, 1–11 (2020).

    Google Scholar 

  80. Wang, Q. et al. Molecularly engineered photocatalyst sheet for scalable solar formate production from carbon dioxide and water. Nat. Energy 5, 703–710 (2020).

    Article  CAS  Google Scholar 

  81. Jiang, Z. et al. Filling metal–organic framework mesopores with TiO2 for CO2 photoreduction. Nature 586, 549–554 (2020). This article reports a MOF material for photocatalytic CO2 reduction and water oxidation.

    Article  CAS  Google Scholar 

  82. Schmidt, D., Hager, M. D. & Schubert, U. S. Photo-rechargeable electric energy storage systems. Adv. Energy Mater. 6, 1500369 (2016).

    Article  Google Scholar 

  83. Johnson, M. P. Understanding biochemistry 2. Essays in Biochemistry 60, 255–273 (2016).

  84. Fu, Y. et al. Integrated power fiber for energy conversion and storage. Energy Environ. Sci. 6, 805–812 (2013).

    Article  CAS  Google Scholar 

  85. Tian, Z. et al. Ultrafast rechargeable Zn micro-batteries endowing a wearable solar charging system with high overall efficiency. Energy Environ. Sci. 14, 1602–1611 (2021).

    Article  CAS  Google Scholar 

  86. Chen, P., Li, G.-R., Li, T.-T. & Gao, X.-P. Solar-driven rechargeable lithium–sulfur battery. Adv. Sci. 6, 1900620 (2019).

    Article  Google Scholar 

  87. Takshi, A., Aljafari, B., Kareri, T. & Stefanakos, E. A critical review on the voltage requirement in hybrid cells with solar energy harvesting and energy storage capability. Batteries Supercaps 4, 252–267 (2021).

    Article  Google Scholar 

  88. Gibson, T. L. & Kelly, N. A. Solar photovoltaic charging of lithium-ion batteries. J. Power Sources 195, 3928–3932 (2010).

    Article  CAS  Google Scholar 

  89. Um, H.-D. et al. Monolithically integrated, photo-rechargeable portable power sources based on miniaturized Si solar cells and printed solid-state lithium-ion batteries. Energy Environ. Sci. 10, 931–940 (2017).

    Article  CAS  Google Scholar 

  90. Xu, J., Chen, Y. & Dai, L. Efficiently photo-charging lithium-ion battery by perovskite solar cell. Nat. Commun. 6, 1–7 (2015).

    Article  CAS  Google Scholar 

  91. Gurung, A. et al. Highly efficient perovskite solar cell photocharging of lithium ion battery using DC–DC booster. Adv. Energy Mater. 7, 1602105 (2017).

    Article  Google Scholar 

  92. Du, P. et al. Self-powered electronics by integration of flexible solid-state graphene-based supercapacitors with high performance perovskite hybrid solar cells. Adv. Funct. Mater. 25, 2420–2427 (2015).

    Article  CAS  Google Scholar 

  93. Li, C. et al. Flexible perovskite solar cell-driven photo-rechargeable lithium-ion capacitor for self-powered wearable strain sensors. Nano Energy 60, 247–256 (2019).

    Article  CAS  Google Scholar 

  94. Gurung, A. & Qiao, Q. Solar charging batteries: advances, challenges, and opportunities. Joule 2, 1217–1230 (2018).

    Article  CAS  Google Scholar 

  95. Lv, J., Xie, J., Mohamed, A. G. A., Zhang, X. & Wang, Y. Photoelectrochemical energy storage materials: design principles and functional devices towards direct solar to electrochemical energy storage. Chem. Soc. Rev. 51, 1511–1528 (2022). This review summarizes the design principles of photoelectrochemical energy storage materials for direct solar to electrochemical energy storage.

    Article  CAS  Google Scholar 

  96. Paolella, A. et al. Light-assisted delithiation of lithium iron phosphate nanocrystals towards photo-rechargeable lithium ion batteries. Nat. Commun. 8, 14643 (2017).

    Article  CAS  Google Scholar 

  97. Lv, J. Q. et al. Direct solar-to-electrochemical energy storage in a functionalized covalent organic framework. Angew. Chem. Int. Ed. 57, 12716–12720 (2018).

    Article  CAS  Google Scholar 

  98. Boruah, B. D., Wen, B. & De Volder, M. Light rechargeable lithium-ion batteries using V2O5 cathodes. Nano Lett. 21, 3527–3532 (2021).

    Article  CAS  Google Scholar 

  99. Deka Boruah, B. et al. Vanadium dioxide cathodes for high-rate photo-rechargeable zinc-ion batteries. Adv. Energy Mater. 11, 2100115 (2021).

    Article  CAS  Google Scholar 

  100. Boruah, B. D. et al. Photo-rechargeable zinc-ion batteries. Energy Environ. Sci. 13, 2414–2421 (2020).

    Article  CAS  Google Scholar 

  101. Huang, Y. et al. Atomic modulation and structure design of carbons for bifunctional electrocatalysis in metal–air batteries. Adv. Mater. 31, 1803800 (2019).

    Article  Google Scholar 

  102. Lv, J. et al. A photo-responsive bifunctional electrocatalyst for oxygen reduction and evolution reactions. Nano Energy 43, 130–137 (2018).

    Article  CAS  Google Scholar 

  103. Jia, C. et al. Ultra-large sized siloxene nanosheets as bifunctional photocatalyst for a Li–O2 battery with superior round-trip efficiency and extra-long durability. Angew. Chem. Int. Ed. 60, 11257–11261 (2021).

    Article  CAS  Google Scholar 

  104. Lv, Q. et al. Semiconducting metal-organic polymer nanosheets for a photoinvolved Li–O2 battery under visible light. J. Am. Chem. Soc. 143, 1941–1947 (2021).

    Article  CAS  Google Scholar 

  105. Qiao, G.-Y. et al. Perovskite quantum dots encapsulated in a mesoporous metal–organic framework as synergistic photocathode materials. J. Am. Chem. Soc. 143, 14253–14260 (2021).

    Article  CAS  Google Scholar 

  106. Fukuzumi, S. Development of bioinspired artificial photosynthetic systems. Phys. Chem. Chem. Phys. 10, 2283–2297 (2008).

    Article  CAS  Google Scholar 

  107. Li, D., Shi, J. & Li, C. Transition-metal-based electrocatalysts as cocatalysts for photoelectrochemical water splitting: a mini review. Small 14, 1704179 (2018).

    Article  Google Scholar 

  108. Hemmerling, J. R., Mathur, A. & Linic, S. Design principles for efficient and stable water splitting photoelectrocatalysts. Acc. Chem. Res. 54, 1992–2002 (2021).

    Article  CAS  Google Scholar 

  109. Jia, J. et al. Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%. Nat. Commun. 7, 1–6 (2016).

    Article  Google Scholar 

  110. Wang, J. et al. Non-precious-metal catalysts for alkaline water electrolysis: operando characterizations, theoretical calculations, and recent advances. Chem. Soc. Rev. 49, 9154–9196 (2020).

    Article  CAS  Google Scholar 

  111. Yu, Z.-Y. et al. Clean and affordable hydrogen fuel from alkaline water splitting: past, recent progress, and future prospects. Adv. Mater. 33, 2007100 (2021).

    Article  CAS  Google Scholar 

  112. Deng, C. et al. Earth-abundant metal-based electrocatalysts promoted anodic reaction in hybrid water electrolysis for efficient hydrogen production: recent progress and perspectives. Adv. Energy Mater. 12, 2201047 (2022).

    Article  CAS  Google Scholar 

  113. Lei, L. et al. Demystifying the active roles of NiFe-based oxides/(oxy)hydroxides for electrochemical water splitting under alkaline conditions. Coord. Chem. Rev. 408, 213177 (2020).

    Article  CAS  Google Scholar 

  114. Roger, I., Shipman, M. A. & Symes, M. D. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem. 1, 0003 (2017).

    Article  CAS  Google Scholar 

  115. Fujishima, A. & Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972).

    Article  CAS  Google Scholar 

  116. Yu, Z., Li, F. & Sun, L. Recent advances in dye-sensitized photoelectrochemical cells for solar hydrogen production based on molecular components. Energy Environ. Sci. 8, 760–775 (2015).

    Article  CAS  Google Scholar 

  117. Xiao, Y. et al. Band structure engineering and defect control of Ta3N5 for efficient photoelectrochemical water oxidation. Nat. Catal. 3, 932–940 (2020).

    Article  CAS  Google Scholar 

  118. Pan, L. et al. Cu2O photocathodes with band-tail states assisted hole transport for standalone solar water splitting. Nat. Commun. 11, 1–10 (2020).

    Article  Google Scholar 

  119. Wang, H. et al. Highly active deficient ternary sulfide photoanode for photoelectrochemical water splitting. Nat. Commun. 11, 1–11 (2020).

    Google Scholar 

  120. Thalluri, S. M. et al. Strategies for semiconductor/electrocatalyst coupling toward solar-driven water splitting. Adv. Sci. 7, 1902102 (2020).

    Article  CAS  Google Scholar 

  121. Zhong, S. et al. Hybrid cocatalysts in semiconductor-based photocatalysis and photoelectrocatalysis. J. Mater. Chem. A 8, 14863–14894 (2020).

    Article  CAS  Google Scholar 

  122. Polman, A., Knight, M., Garnett, E. C., Ehrler, B. & Sinke, W. C. Photovoltaic materials: present efficiencies and future challenges. Science 352, aad4424 (2016).

    Article  Google Scholar 

  123. Cheng, W.-H. et al. Monolithic photoelectrochemical device for direct water splitting with 19% efficiency. ACS Energy Lett. 3, 1795–1800 (2018).

    Article  CAS  Google Scholar 

  124. Schneidewind, J. How much technological progress is needed to make solar hydrogen cost-competitive? Adv. Energy Mater. 12, 2200342 (2022).

    Article  CAS  Google Scholar 

  125. Feng, J. et al. Non-oxide semiconductors for artificial photosynthesis: progress on photoelectrochemical water splitting and carbon dioxide reduction. Nano Today 30, 100830 (2020).

    Article  CAS  Google Scholar 

  126. Tan, J. et al. Hydrogel protection strategy to stabilize water-splitting photoelectrodes. Nat. Energy 7, 537–547 (2022).

    Article  CAS  Google Scholar 

  127. Zhang, M., Xuan, X., Wang, W., Ma, C. & Lin, Z. Anode photovoltage compensation-enabled synergistic CO2 photoelectrocatalytic reduction on a flower-like graphene-decorated Cu foam cathode. Adv. Funct. Mater. 30, 2005983 (2020).

    Article  CAS  Google Scholar 

  128. Foster, B. M. et al. Catalytic mismatching of CuInSe2 and Ni3Al demonstrates selective photoelectrochemical CO2 reduction to methanol. ACS Appl. Energy Mater. 3, 109–113 (2020).

    Article  CAS  Google Scholar 

  129. Ding, P., Jiang, T., Han, N. & Li, Y. Photocathode engineering for efficient photoelectrochemical CO2 reduction. Mater. Today Nano 10, 100077 (2020).

    Article  Google Scholar 

  130. Chu, S. et al. Decoupling strategy for enhanced syngas generation from photoelectrochemical CO2 reduction. iScience 23, 101390 (2020).

    Article  CAS  Google Scholar 

  131. Andrei, V., Reuillard, B. & Reisner, E. Bias-free solar syngas production by integrating a molecular cobalt catalyst with perovskite–BiVO4 tandems. Nat. Mater. 19, 189–194 (2020).

    Article  CAS  Google Scholar 

  132. Andrei, V. et al. Floating perovskite–BiVO4 devices for scalable solar fuel production. Nature 608, 518–522 (2022).

    Article  CAS  Google Scholar 

  133. Wang, X. Y. et al. Rechargeable Zn–CO2 electrochemical cells mimicking two-step photosynthesis. Adv. Mater. 31, e1807807 (2019). This article reports a decoupled semi-artificial photosynthesis.

    Article  Google Scholar 

  134. Xie, J. F. et al. Reversible aqueous zinc–CO2 batteries based on CO2–HCOOH interconversion. Angew. Chem. Int. Ed. 57, 16996–17001 (2018).

    Article  CAS  Google Scholar 

  135. Xie, J. & Wang, Y. Recent development of CO2 electrochemistry from Li–CO2 batteries to Zn–CO2 batteries. Acc. Chem. Res. 52, 1721–1729 (2019).

    Article  CAS  Google Scholar 

  136. Xie, J. F., Zhou, Z. & Wang, Y. B. Metal–CO2 batteries at the crossroad to practical energy storage and CO2 recycle. Adv. Funct. Mater. 30, 1908285 (2020).

    Article  CAS  Google Scholar 

  137. Wang, X. Y. et al. A photovoltaic-driven solid-state Zn–CO2 electrochemical cell system with sunlight-insusceptible chemical production. J. Mater. Chem. A 8, 13806–13811 (2020). This article reports a decoupled artificial leaf device.

    Article  CAS  Google Scholar 

  138. Wang, X.-X. et al. A renewable light-promoted flexible Li–CO2 battery with ultrahigh energy efficiency of 97.9%. Small 17, 2100642 (2021).

    Article  CAS  Google Scholar 

  139. Guan, D.-H. et al. Light/electricity energy conversion and storage for a hierarchical porous In2S3@CNT/SS cathode towards a flexible Li–CO2 battery. Angew. Chem. Int. Ed. 59, 19518–19524 (2020).

    Article  CAS  Google Scholar 

  140. Li, J. X. et al. High-efficiency and stable Li–CO2 battery enabled by carbon nanotube/carbon nitride heterostructured photocathode. Angew. Chem. Int. Ed. 61, e202114612 (2022).

    CAS  Google Scholar 

  141. Liu, X. et al. Ultrathin p–n type Cu2O/CuCoCr-layered double hydroxide heterojunction nanosheets for photo-assisted aqueous Zn–CO2 batteries. J. Mater. Chem. A 9, 26061–26068 (2021).

    Article  CAS  Google Scholar 

  142. Krishna, A. et al. Infrared optical and thermal properties of microstructures in butterfly wings. Proc. Natl Acad. Sci. USA 117, 1566–1572 (2020).

    Article  CAS  Google Scholar 

  143. Weinstein, L. A. et al. Concentrating solar power. Chem. Rev. 115, 12797–12838 (2015).

    Article  CAS  Google Scholar 

  144. Zhang, C., Liang, H.-Q., Xu, Z.-K. & Wang, Z. Harnessing solar-driven photothermal effect toward the water–energy nexus. Adv. Sci. 6, 1900883 (2019).

    Article  CAS  Google Scholar 

  145. Wang, L., Feng, Y., Wang, K. & Liu, G. Solar water sterilization enabled by photothermal nanomaterials. Nano Energy 87, 106158 (2021).

    Article  CAS  Google Scholar 

  146. Bai, Y., Jantunen, H. & Juuti, J. Energy harvesting research: the road from single source to multisource. Adv. Mater. 30, 1707271 (2018).

    Article  Google Scholar 

  147. Zhang, Y., Wu, K. & Fu, Q. A structured phase change material with controllable thermoconductive highways enables unparalleled electricity via solar-thermal-electric conversion. Adv. Funct. Mater. 32, 2109255 (2022).

    Article  CAS  Google Scholar 

  148. Yang, L., Chen, Z.-G., Dargusch, M. S. & Zou, J. High performance thermoelectric materials: progress and their applications. Adv. Energy Mater. 8, 1701797 (2018).

    Article  Google Scholar 

  149. Wang, Y. et al. Efficient photo-thermo-electric conversion using polyoxovanadate in ionic liquid for low-grade heat utilization. ChemSusChem 14, 5434–5441 (2021).

    Article  CAS  Google Scholar 

  150. Bayrak, F., Abu-Hamdeh, N., Alnefaie, K. A. & Oztop, H. F. A review on exergy analysis of solar electricity production. Renew. Sustain. Energy Rev. 74, 755–770 (2017).

    Article  Google Scholar 

  151. Zhang, Y., Umair, M. M., Zhang, S. & Tang, B. Phase change materials for electron-triggered energy conversion and storage: a review. J. Mater. Chem. A 7, 22218–22228 (2019).

    Article  CAS  Google Scholar 

  152. Li, T. et al. Highly conductive phase change composites enabled by vertically-aligned reticulated graphite nanoplatelets for high-temperature solar photo/electro-thermal energy conversion, harvesting and storage. Nano Energy 89, 106338 (2021).

    Article  CAS  Google Scholar 

  153. Zhang, W., Ling, Z., Fang, X. & Zhang, Z. Anisotropically conductive Mg(NO3)2·6H2O/g-C3N4-graphite sheet phase change material for enhanced photo-thermal storage. Chem. Eng. J. 430, 132997 (2022).

    Article  CAS  Google Scholar 

  154. Liu, H. et al. Photothermal catalysts for hydrogenation reactions. Chem. Commun. 57, 1279–1294 (2021).

    Article  CAS  Google Scholar 

  155. Romero, M. & Steinfeld, A. Concentrating solar thermal power and thermochemical fuels. Energy Environ. Sci. 5, 9234–9245 (2012).

    Article  CAS  Google Scholar 

  156. Chueh, W. C. et al. High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria. Science 330, 1797–1801 (2010).

    Article  CAS  Google Scholar 

  157. Zhou, L. et al. Quantifying hot carrier and thermal contributions in plasmonic photocatalysis. Science 362, 69–72 (2018).

    Article  CAS  Google Scholar 

  158. Rej, S. et al. Determining plasmonic hot electrons and photothermal effects during H2 evolution with TiN–Pt nanohybrids. ACS Catal. 10, 5261–5271 (2020).

    Article  CAS  Google Scholar 

  159. Cai, M. et al. Greenhouse-inspired supra-photothermal CO2 catalysis. Nat. Energy 6, 807–814 (2021).

    Article  CAS  Google Scholar 

  160. Fang, S. & Hu, Y. H. Thermo-photo catalysis: a whole greater than the sum of its parts. Chem. Soc. Rev. 51, 3609–3647 (2022).

    Article  CAS  Google Scholar 

  161. Tao, P. et al. Solar-driven interfacial evaporation. Nat. Energy 3, 1031–1041 (2018).

    Article  Google Scholar 

  162. Jain, P. K., Huang, X., El-Sayed, I. H. & El-Sayed, M. A. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res. 41, 1578–1586 (2008).

    Article  CAS  Google Scholar 

  163. Chen, X. et al. Scaling up nanoscale water-driven energy conversion into evaporation-driven engines and generators. Nat. Commun. 6, 1–7 (2015).

    Google Scholar 

  164. Yang, P. et al. Solar-driven simultaneous steam production and electricity generation from salinity. Energy Environ. Sci. 10, 1923–1927 (2017).

    Article  CAS  Google Scholar 

  165. Chang, C., Wang, Z., Fu, B. & Ji, Y. High-efficiency solar thermoelectric conversion enabled by movable charging of molten salts. Sci. Rep. 10, 20500 (2020).

    Article  CAS  Google Scholar 

  166. Mehrali, M., ten Elshof, J. E., Shahi, M. & Mahmoudi, A. Simultaneous solar-thermal energy harvesting and storage via shape stabilized salt hydrate phase change material. Chem. Eng. J. 405, 126624 (2021).

    Article  CAS  Google Scholar 

  167. Marxer, D., Furler, P., Takacs, M. & Steinfeld, A. Solar thermochemical splitting of CO2 into separate streams of CO and O2 with high selectivity, stability, conversion, and efficiency. Energy Environ. Sci. 10, 1142–1149 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 22105037, 22279141, 22205238, 21872147 and 22022110), Key Research Program of Frontier Sciences, CAS (No. ZDBS-LY-SLH028), National key Research & Development Program of China (2021YFA1501500 and 2021YFA1202700), CAS Key Laboratory of Urban Pollutant Conversion Joint Research Fund (KLUPC-2020-3), Youth Innovation Promotion Association CAS (2022308) to J.X., Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China (No. 2021ZZ106), Science and Technology Service Network Initiative (KFJ-STS-QYZD-2021-09-23) and Natural Science Foundation of Fujian Province (No. 2020J01934).

Author information

Authors and Affiliations

Authors

Contributions

J.L., J.X. and A.G.A.M. contributed equally to this work. J.L., J.X., A.G.A.M. and Y.W. wrote this Review together. X.Z., Y.F., L.J., D.Y. and E.Z. helped draw the figures. Y.W. is in charge of all the manuscript. All authors contributed to the discussion and writing of this Review.

Corresponding author

Correspondence to Yaobing Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, J., Xie, J., Mohamed, A.G.A. et al. Solar utilization beyond photosynthesis. Nat Rev Chem 7, 91–105 (2023). https://doi.org/10.1038/s41570-022-00448-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-022-00448-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing