10.04.2013 Views

Phylum Echinodermata

Phylum Echinodermata

Phylum Echinodermata

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

echinoderms<br />

<strong>Echinodermata</strong><br />

tagghudingar


general things<br />

<strong>Echinodermata</strong>


<strong>Echinodermata</strong> Klein, 1734 ex Bruguière, 1789<br />

Ethymology: Greek echinos (hedgehog, spine) and derma (integument, skin)<br />

Main characteristics:<br />

all echinoderms have a mesodermal skeleton of porous calcite plates<br />

but: reduced to absent among some holothuroids<br />

skeleton covered by a thin skin Endoskeleton<br />

radial symmetry, typically five-rayed / pentameral, as adults<br />

but: not developed in stem-group echinoderms, or carpoids<br />

lost or obscured by secondary adaptations<br />

water-vascular system (complex internal apparatus of tubes and bladders containing fluid)<br />

with extensions emerging through the skeleton to the outside as tube feet or podia<br />

(podia serve for locomotion, respiration and feeding a.o.)<br />

but: has not been confirmed in all fossil groups<br />

<strong>Echinodermata</strong> – general features


Porous calcite plates (ossicles)<br />

intracellular<br />

reducing the ossicle-producing stroma cell to a thin layer that lines the skeletal meshwork (stereom).<br />

each ossicle is a monocrystal<br />

high-magnesium calcite, which is a spathic mineral (crystalline with strong cleavage)<br />

• spathic fracture has been changed to conchoidal by inserting organic macromolecules<br />

into the crystal lattice<br />

• each ossicle is composed of two interlocked networks, one composed of<br />

mineral matter (stereom) and the other, of organic matter of mesodermal origin (stroma).<br />

• the trabecular structure of the stereom does not allow cracks to propagate<br />

farther than the next cavity<br />

• in fossils, pores of the stereom have become closed by diagenetic calcite in optical continuity.<br />

<strong>Echinodermata</strong> – general features – ossicles<br />

epidermis<br />

stroma<br />

stereom


Ossicles ...<br />

... can be fused into a test (sea urchins, crinoids)<br />

... can spread apart (sea cucumbers)<br />

... can be intermediate and variable (sea stars)<br />

<strong>Echinodermata</strong> – general features – ossicles


Exceptions! Primary polycrystalline calcite in ...<br />

<strong>Echinodermata</strong> – general features – ossicles<br />

... the cortex of primary spines of Cidaridae<br />

... tooth sceleton of Clypeaster<br />

... the accessory calcareous structures<br />

… filling the crevice fold in the chewing<br />

… areas of Diadematoida teeth.<br />

Cortex (primary polycrystalline)<br />

disturbed crystal structure (secondary!)


Water vascular system (= ambulacral system)<br />

Hydraulic system of fluid-filled canals<br />

• internal transport<br />

• locomotion<br />

• gas exchange<br />

• food capture<br />

• excretion<br />

• fluid similar to seawater and is moved<br />

through system with cilia<br />

Podia – tube feet<br />

• suction cups at the end<br />

• each tube foot works independently<br />

• moved by muscles and hydraulics<br />

Madreporite<br />

• perforated platelike structure which acts as the inlet for the water vascular system<br />

• (important for orientation, arms/ambulacralia)<br />

Stone canal<br />

• lime-walled tube which connects ring canal and madreporite<br />

<strong>Echinodermata</strong> – general features – water vascular system<br />

[Latin ambulacrum, walk planted with trees, from ambulare, to walk.]


<strong>Echinodermata</strong> – general features – water vascular system


ambulacra<br />

<strong>Echinodermata</strong> – general features – water vascular system


Other fearures:<br />

non-segmented<br />

no head<br />

open blood system<br />

nervous system simple without nerval center<br />

light sensors/eyespots but no eyes<br />

reproduce sexually (produce sperm and eggs)<br />

and asexually (regenerating lost parts)<br />

<strong>Echinodermata</strong> – other features


Ecology<br />

exclusively marine and stenohaline<br />

typically benthic (infaunal, epifaunal) but a few pelagic (planktonic and<br />

pseudo-planktonic) forms exist<br />

live free (vagile, floating, or active swimming) or attached (sessile)<br />

live on all kinds of substrates, littoral to abyssal, in all latitudes<br />

(today typical in shallow coastal waters and ocean trenches)<br />

carnivorous / herbivorous / detritus eaters<br />

<strong>Echinodermata</strong> – ecology


<strong>Echinodermata</strong> – ecology


<strong>Echinodermata</strong> – ecology


Luidia ciliaris (Asteroidea)<br />

Echinocardium cordatum (Echinoidea)<br />

<strong>Echinodermata</strong> – ecology<br />

Heterometra sp.<br />

Amphiura brachiata (Ophiuroidea, brittle star)


systematics<br />

<strong>Echinodermata</strong><br />

1) Stem-group <strong>Echinodermata</strong>


Echinoderm classification<br />

Arkarua adami from the Ediacaran Hills of Australia<br />

oldest putative echinoderm<br />

Reference:<br />

Gehling, J.G. 1987. Earliest known echinoderm - a new Ediacaran fossil from the<br />

Pound Subgroup of South Australia. – Alcheringa, 11:337-345.<br />

<strong>Echinodermata</strong> – classification


Helicoplacoidea (Lower Cambrian)<br />

spirals of overlapping ossicles<br />

"mouth" was a long groove that also spiralled around their body<br />

lived probably in burrows and extending their bodies outward to feed<br />

three ambulacra<br />

complete fossils only found in the White Mountains in California<br />

Reference:<br />

Dornbos, S. Q. & Bottjer, D. J. 2000. Taphonomy and environmental distribution of<br />

helicoplacoid echinoderms. – Palaios, 16: 197-204.<br />

<strong>Echinodermata</strong> – classification – Helicoplacoidea


Mixed ossicles (Lower Cambrian)


Homlozoa systematics<br />

<strong>Echinodermata</strong><br />

2) Homalozoa


Homalozoa [= Calcichordata, Carpoidea] (Middle Cambrian – Middle Devonian)<br />

bilateral or asymmetical<br />

main body (theca) constructed of two types of ossicles: marginalia and centralia<br />

theca typically flattened and with appendages (stele, aulacophore)<br />

use of appendages unknown (locomotion, feeding, tail for swimming etc.)<br />

Four main groups can be distinguished<br />

Ctenocystoidea – Homostelea (=Cincta) – Homoiostelea (= Soluta) – Stylophora<br />

<strong>Echinodermata</strong> – classification - Homalozoa<br />

[incl. Mitrata,<br />

Cornuta,<br />

Ankyroida]


marginalia<br />

presumed mouth<br />

”arm” =? ambulacrum<br />

centralia<br />

<strong>Echinodermata</strong> – classification - Homalozoa<br />

presumed anus<br />

proxi- mesi- dististele<br />

stele, aulacophore (tripartite)<br />

anterior? posterior?


Stylophora, Ankyroida<br />

Stylophora, Cornuta<br />

<strong>Echinodermata</strong> – classification - Homalozoa<br />

Homoiostelea<br />

Homostelea<br />

Ctenocystoidea


Calcichordate theory (Jefferies 1986):<br />

Chordates (ourselves) evolved from homalozoan echinoderms<br />

Stele=tail<br />

Calcite skeleton was replaced by an apatite one<br />

Theory more or less abandoned by now


systematics<br />

<strong>Echinodermata</strong><br />

3) Pelmatozoa


Pelmatozoa (since Middle Cambrian)<br />

”attached living”, stalked echinoderms (some secondarily freeliving)<br />

cup-shaped head (the calyx)<br />

attached to the calyx are arms (brachiols/brachia)<br />

the calyx is usually connected<br />

oral plates<br />

tegmen<br />

to the bottom via a stem<br />

pentamere or radial symmetry<br />

Three main groups:<br />

Cystoidea<br />

Blastoidea<br />

Crinoidea (sea lilies)<br />

<strong>Echinodermata</strong> – classification – Pelmatozoa<br />

theca<br />

calyx<br />

stem<br />

nodal<br />

internodal<br />

’arm’<br />

brachium<br />

brachiol<br />

columnars


Cystoidea (Ordovician to Devonian) [kristalläpplen]<br />

respiratory ”pore structures” traversing the plates of the theca<br />

pore structures are basis for taxonomy<br />

theca often slightly irregular<br />

stem short or absent<br />

well defined ”anal pyramid” surrounded by trigonal anal plates<br />

laterally to perioral plates<br />

hydropore (slit near the perisome, probably entrance of water vascular system)<br />

arms are non-branching, biserial brachiols<br />

two pore types typify the two main groups of cystoids<br />

Diploporita Rhombifera<br />

<strong>Echinodermata</strong> – classification – Pelmatozoa – Cystoidea<br />

diplopores dichopores<br />

rhomb-shaped contour


[anal pyramid, brachiols, dichopores]<br />

<strong>Echinodermata</strong> – classification – Pelmatozoa – Cystoidea


Blastoidea (Early Cambrian/Ordovician to Permian)<br />

typically with pentamere symmetry<br />

short stem (rarely preserved)<br />

crown of brachioles (rarely preserved)<br />

typical plating pattern:<br />

3 basal plates (BB) – 5 radial plates (RR) – 5 deltoid plates (Δ) –<br />

5 lancet plates below ambulacra<br />

star shaped mouth surrounded by spiracles (”outlet system”)<br />

<strong>Echinodermata</strong> – classification – Pelmatozoa – Blastoidea<br />

anispiracle


Blastoidea sensu stricto<br />

<strong>Echinodermata</strong> – classification – Pelmatozoa – Blastoidea<br />

Eocrinoidea (Early Cambrian to Silurian)<br />

Gogia palmeri


Crinoidea (since Ordovician)<br />

Most common palaeozoic<br />

echinoderm fossils<br />

Long stems<br />

Crinoid “meadows” in shallow water<br />

Disarticulated stems rockforming


Crinoidea (since Ordovician)<br />

radials<br />

basals<br />

radials<br />

basals<br />

infrabasals<br />

organized in stem, theka and brachia with ambulacra<br />

monocyclic calyx<br />

dicyclic calyx<br />

<strong>Echinodermata</strong> – classification – Pelmatozoa – Crinoidea<br />

radianal plate<br />

brachia<br />

brachials


Crinoidea (major groups and relationships)<br />

= Aethocrinea<br />

1 development of true arms with extension of the ambulacra<br />

2 loss of the basal circlet<br />

3 loss of the lintel circlet<br />

4 fixed brachials and fixed interradials incorporated into the calyx<br />

5 with the mouth exposed on the tegmen and loose plate sutures<br />

6 loss of the anal plate and an entoneural system enclosed within the calyx plates<br />

<strong>Echinodermata</strong> – classification – Pelmatozoa – Crinoidea<br />

Early Ordovician to Permian<br />

Ordovician<br />

since Triassic<br />

Early Ordovician to Permian<br />

Middle Ordovician to Permian<br />

Early Ordovician to Permian


Camerata<br />

<strong>Echinodermata</strong> – classification – Pelmatozoa – Crinoidea – Camerata


Articulata (Comatulida)<br />

occur from intertidal to abyssal depths<br />

retain a stalk as postlarvae, but shed<br />

all but the topmost segment and take up<br />

a free existence as juveniles and adults<br />

with cirri (columns of ossicles) radiating from the<br />

margin of the centrodorsal plate<br />

distal ossicle is a small claw (holdfast)<br />

Leptometra celtica<br />

<strong>Echinodermata</strong> – classification – Pelmatozoa – Crinoidea – Articulata – Comatulida<br />

Antedon bifida


In deep water settings:<br />

Stalked crinoids survive to<br />

the present<br />

Crown of arms directed<br />

against current for effective<br />

filtering


systematics<br />

<strong>Echinodermata</strong><br />

4) Eleutherozoa


Eleutherozoa (since Early Cambrian / Ordovician)<br />

the non-stalked, vagile echinoderms (with exceptions!)<br />

= sea cucumbers, sea stars and brittle stars, sea urchins and sand dollars<br />

and some small fossil groups of uncertain affinity, as well as sea daisies<br />

Edrioasteroidea (Early Cambrian to Early Carboniferous)<br />

Holothuroidea (Ordovician?, since Early Devonian)<br />

(sea cucumbers)<br />

Concentricycloidea (Recent)<br />

(sea daisies)<br />

Asterozoa (since Early Ordovocian)<br />

(sea stars and cushion stars, brittle stars and basket stars, Somasteroidea)<br />

Echinozoa (since Early Ordovician)<br />

(sea urchins and sand dollars, Cyclocystoidea?)<br />

<strong>Echinodermata</strong> – classification – Eleutherozoa


Edrioasteroidea<br />

typically with well developed pentamere symmetry<br />

endothecal ambulacral system<br />

no arms or brachioles<br />

with anal pyramid and peristomal field<br />

sessile<br />

combine characteristics of<br />

Eleutherozoa and Pelmatozoa<br />

Early Cambrian to Early Carboniferous<br />

Spiraclavus (Carboniferous)<br />

<strong>Echinodermata</strong> – classification – Eleutherozoa – Edrioasteroidea<br />

Stromatocystites (Cambrian)<br />

Edrioaster (Cambrian)<br />

Carneyella (Ordovician)


Holothuroidea (sea cucumbers)<br />

mouth and anus at opposite ends (secondary<br />

ossicles are imbedded within leathery skin<br />

ossicles often reduced to little sclerites (typify certain families)<br />

only in mouth region is a rigid series of plates (perioral ring)<br />

ambulacra arranged in two sets parallel with the long axis (3 ventral, 2 dorsal)<br />

few complete fossils: 2 Upper Jurassic (Solnhofen), 1 Lower Devonian Hunsrück<br />

Ordovician?, since Early Devonian<br />

Palaeocucumaria hunsrueckiana<br />

<strong>Echinodermata</strong> – classification – Eleutherozoa – Holothuroidea<br />

modified tube feet<br />

for feeding


Concentricycloidea (sea daisies)<br />

discovered in 1986<br />

disk-shaped flat bodies and are less than 1 cm in diameter. The two<br />

species were located on wood found in deep waters off the coasts of New Zealand and the Bahamas<br />

recently found in the North Pacific (Voight, 2005)<br />

water-vascular system, with tube feet on the body surface around the edge of the disk<br />

no obvious arms or mouth; appear to absorb nutrients through their body wall<br />

possibly an aberrant asteroid<br />

Reference:<br />

Voight, J. R. 2005. First report of the enigmatic echinoderm Xyloplax from the North Pacific. –<br />

Biological Bulletin, 208: 77-80.<br />

<strong>Echinodermata</strong> – classification – Eleutherozoa – Concentricycloidea


Asterozoa<br />

echinoderms with depressed star-shaped body<br />

with central disc bearing mouth on underside<br />

symmetrical radiating arms<br />

tube feet normaly confined to lower side of body<br />

since Early Ordovician<br />

3 main groups:<br />

Asteroidea<br />

(sea stars and cushion stars)<br />

Somasteroidea<br />

Ophiuroidea<br />

(brittle stars and basket stars)<br />

<strong>Echinodermata</strong> – classification – Eleutherozoa – Asterozoa


Asteroidea (sea stars and cushion stars)<br />

Asterozoans with relatively broad arms<br />

considerable hollow space between ossicular frame<br />

arms not seperated from central disc<br />

oral side with open ambulacral grooves with rows of tube feed<br />

since Early Ordovician<br />

gen. et sp. indet. (Ordovician, Morocco) Crateraster (Cretaceous, England)<br />

<strong>Echinodermata</strong> – classification – Eleutherozoa – Asterozoa – Asteroidea


Somasteroidea<br />

Asterozoans with oral surface bearing shallow radial channels<br />

axial skeleton with ambulacral ossicles in double series<br />

each ambulacral giving rise to a transverse series of ossicles (metapinnules)<br />

Early Ordovician to Late Devonian<br />

appear prior to Asteroidea and Ophiuroidea<br />

Villebrunaster thorali (Early Ordovician, France)<br />

oral, ventral side<br />

<strong>Echinodermata</strong> – classification – Eleutherozoa – Asterozoa – Somasteroidea<br />

Archegonaster pentagonus (Early Ordovician, Czechia)<br />

oral, ventral side


Ophiuroidea (brittle stars and basket stars)<br />

5 thin, flexible snake-like arms<br />

arms clearly demarcated from central disks and made up<br />

of a single row of large calcite plates termed vertebrae<br />

[early members had double rows of alternating vertebrae]<br />

typically suspension feeders, few carnivores<br />

live today mainly in bathyal and abyssal depths<br />

haven’t chanched much since their first appearance<br />

since Ordovician<br />

modern brittle star<br />

Encrinaster (Devonian)<br />

<strong>Echinodermata</strong> – classification – Eleutherozoa – Asterozoa – Ophiuroidea<br />

Ophioderma (Jurassic)<br />

Furcaster (Devonian)<br />

Loriolaster (Devonian)


Echinozoa (”sea urchins”)<br />

echinoderms with globose or discoidal test<br />

typically with spines<br />

typical with 5 ambulacral fields<br />

2 main groups:<br />

1) Echinoidea (sea urchins and sand dollars)<br />

2) Cyclocystoidea<br />

since Early Ordovician<br />

Phymosoma sp. (Cretaceous)<br />

<strong>Echinodermata</strong> – classification – Eleutherozoa – Echinozoa


Echinoidea (sea urchins and sand dollars)<br />

test (= corona) constructed of 20 radial plate rows (= 10 segments)<br />

narrow segments = ambulacra, broad segments = interambulacra<br />

interambulacral plates are large and tubercular, without perforations<br />

ambulacral plates have pored plates through which the tube feet emerge<br />

mouth with five hard teeth arranged in a circlet (known as Aristotle's lantern)<br />

[reduced in derived forms; absent in stem group echinoids] (used for grazing)<br />

move with tube feet or ”walk” on their spines<br />

traditionally devided in regular (Regularia) and irregular echinoids (Irregularia)<br />

<strong>Echinodermata</strong> – classification – Eleutherozoa – Echinozoa - Echinoidea


Aristotle's lantern<br />

perignathic girdle<br />

<strong>Echinodermata</strong> – classification – Eleutherozoa – Echinozoa - Echinoidea


“Regularia and Irregularia”<br />

represent no phylogentic groups, still used as a convenient, informal classification<br />

Regularia: strict pentamere symmetry<br />

upper surface (aboral) with central apical disc bearing periproct with anus<br />

long spines for protection<br />

epibenthic grazers<br />

paraphyletic group<br />

Irregularia: pentamere symmetry with superimposed bilateral symmetry<br />

mouth located more anterior<br />

anus at posterior end<br />

test covered with a mat of short spines<br />

infaunal depost feeders<br />

most probably monophyletic<br />

<strong>Echinodermata</strong> – classification – Eleutherozoa – Echinozoa - Echinoidea


Echinoidea classification<br />

==o Echinoidea<br />

|--o Perischoechinoidea = “Paleozoic Regularia”, stem group<br />

| `--o Cidariida<br />

| |-- Cidaridae = advanced stem group<br />

| `-- Psychocidaridae<br />

`--+-- Euechinoidea [paraphyletic?] = “Regularia”<br />

|-- Gnathostomata = a.o. “sand dollars”<br />

`-- Atelostomata = a.o. “heart urchins”<br />

Perischoechinoidea<br />

- stem group Echinoidea<br />

- more than 20 radial plate rows<br />

- perignathic girdle rudimentary or absent<br />

<strong>Echinodermata</strong> – classification – Eleutherozoa – Echinozoa - Echinoidea


adambulacral - perradial - interradial sutures<br />

<strong>Echinodermata</strong> – classification – Eleutherozoa – Echinozoa – Echinoidea – regular echinoids<br />

Classification:<br />

- Arrangement of plates<br />

in apical disc<br />

- Morphology of lantern<br />

- Construction of<br />

perignathic girdle


<strong>Echinodermata</strong> – classification – Eleutherozoa – Echinozoa – Echinoidea – heart urchins<br />

20 plare columns<br />

5 interambulacral<br />

5 ambulacral<br />

Classification<br />

- Apical disc<br />

- Shape of petals<br />

- Plating of plastron


<strong>Echinodermata</strong> – classification – Eleutherozoa – Echinozoa – Echinoidea – sand dollars<br />

5 interambulacral columns<br />

5 ambulacral columns<br />

Adapical portion of ambulacra<br />

developed int petals<br />

Spines are short and stubby<br />

5 food grooves radiating<br />

from peristome<br />

Often with elongated<br />

perforations (lunules)<br />

Have a lantern and perignathic<br />

Girdle, which, however, can be<br />

resorbed in adult stages


Cyclocystoidea<br />

enigmatic Paleozoic group (Early Ordovocian to Early Carboniferous)<br />

mainly known by their ring of submarginal plates<br />

mode of life and systematic position controverse<br />

in situ finds confirm ”oral side down”<br />

oral disc with complicated<br />

ambulacral system<br />

<strong>Echinodermata</strong> – classification – Eleutherozoa – Echinozoa – Cyclocystoidea


systematics<br />

<strong>Echinodermata</strong><br />

5) Problematica


Echmatocrinus from the Middle Cambrian Burgess Shale<br />

described as the oldest known crinoid<br />

Echmatocrinus brachiatus<br />

• interpretation refused by several authors<br />

• probably best considered as a cnidarian<br />

with octocoral affinity<br />

(Ausich & Babcock, 2000)<br />

Reference:<br />

Ausich W. I. & Babcock, L. E. 2000. Echmatocrinus, a Burgess Shale animal reconsidered. - Lethaia, 33 (2): 92-94.<br />

<strong>Echinodermata</strong> – classification – Problematica<br />

surface pattern with scales/plates


Eldonia, Portalia and Redoubtia, all known from the Burgess Shale have originally<br />

been described as holothourians<br />

Eldonia is now considered to be a jelly fish<br />

Portalia and Redoubtia is of uncertain affinity (polychaete or sponge?)<br />

Eldonia ludwigi Middle Cambrian<br />

<strong>Echinodermata</strong> – classification – Problematica


systematics<br />

<strong>Echinodermata</strong><br />

summary


Classical paleontological<br />

classification<br />

(e.g., Clarkson)<br />

<strong>Phylum</strong> <strong>Echinodermata</strong><br />

Subphylum Blastozoa<br />

* Class Eocrinoidea (Cambrian - Silurian, 30-32 genera)<br />

* Class Parablastoidea (Ordovician, 3 genera)<br />

* Class Rhombifera = Cystoidea in part (Ordovician - Devonian, 60 genera)<br />

* Class Diploporita = Cystoidea in part (Ordovician - Devonian, 42 genera)<br />

* Class Blastoidea (Silurian - Permian, 95 genera)<br />

Subphylum Crinozoa<br />

* Class Crinoidea - sea lilies (Cambrian - Recent, 1005 genera)<br />

* Class Paracrinoidea (Ordovician - Silurian, 13-15 genera)<br />

Subphylum Echinozoa<br />

* Class Echinoidea (Sea Urchins) (Ordovician - Recent, 765 genera)<br />

* Class Holithuriudea (Sea Cucumbers) (Ordovician - Recent, 200 genera)<br />

* Class Edrioasteroidea (early Cambrian - Carboniferous, 35 genera)<br />

* Class Edrioblastoidea (Ordovician, 1 genus)<br />

* Class Helicoplacoidea (Cambrian, 3 genera)<br />

* Class Cyclocystoidea (Ordovician - Devonian, 8 genera)<br />

Subphylum Asterozoa (Stelleroidea)<br />

* Class Asteroidea - starfish - (early Ordovician - Recent, 430 genera)<br />

* Class Ophiuroidea - Brittle Stars -(Ordovician - Recent, 325 genera)<br />

Subphylum Homalozoa<br />

source: http://www.sidwell.edu/us/science/vlb5/Labs/Classification_Lab/Eukarya/Animalia/<strong>Echinodermata</strong><br />

<strong>Echinodermata</strong> – systematics<br />

* Class Stylophora (Cambrian - Devonian, 32 genera)<br />

* Class Homoiostelea (Cambrian - Devonian, 12-13 genera)<br />

* Class Homostelea (Cambrian, 3 genera)<br />

* Class Ctenocystoidea (Cambrian, 2 genera)


<strong>Echinodermata</strong> – systematics


<strong>Echinodermata</strong> – systematics


<strong>Echinodermata</strong> – systematics


<strong>Echinodermata</strong> – systematics


<strong>Echinodermata</strong> – evolution


slut<br />

<strong>Echinodermata</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!